Oscillating double-lined binaries as test cases for understanding stellar evolution

Paul G. Beck

Instituto de Astrofisica de Canaries And the authors of Beck, Kallinger, Pavlovski et al. (A&A, submittd)

The golden age of Asteroseismology : NASA *Kepler* Mission

Its all about density ...

Courtesy of Daniel Huber

Solar-like oscillations in Binaries

Stochastic Oscillations

- Excited by convection
- Amplitudes: ~100 ppm
- Typical signature in frequency spectrum
 - → Mass, radius (Kjeldsen & Bedding 1995)
 - → Detailed stellar structure & dynamics

Binaries

- PB1: Single oscillating component
 - One well-constrained component
 - 20 eclipsing & 20 Tidally interacting
 - → 7 eSB2: calibration of Scaling Relations (Gaulme+ 2016, ApJ, 832, 121)
- PB2: Both components oscillating
 - Many rewarding constraints
 - Only few solar-like PB2 studied (e.g. White+ 2017, Davis+ 2014)
- RGB: KIC9163796: Beck+ (this work)

The light curve

The light curve

An SB2 binary

- Orbital period 120.3 days
- Eccentricity = 0.7
 - A sin i = 122Ro (~25 R_{RG})
 - Min: ~7 R_{RG}
- Ill constrained inclination
- Mass ratio from radial velocity amplitudes: M₁/M₂ = 1.014±0.01

Isolate and renormalize Components

- Functional: F₂/F₁< 1% (FDBinary, Ilijic+ 2004, ASPC 318, 111)
- SB2 fit confirms the SB1 solution

/			Isolate	and renorm	alize Compon	ents
ormalized flux	1.0 TWN MANAGAN AND AND THE TANK	WWWWWWWWWWW	• Fur	ictional: F_2/F_2	1<1%	
			(FDE	Binary, Ilijic+ 2004	4, ASPC 318, 111)	
	0.8		• SB2	fit confirms	the SB1 solution	on
	0.7					
	0.6 -		• GSS	SP (Tkachenk	o+ 2012& ref t	herein
n		Observed	-	Consistent	result	
	0.4	Synthetic	_	Lithium diff	fers by 1.2 dex	
	1.0 Why M standy with in the mining in	MANTER AN ANTA AND IN THE AND				
	MIN MINA VIA	Parameter	Unit	Primary	Secondary)
l flux	0.9 -	Effective temperature T_{r}	[K]	111111111111111111111111111111111111	<u>5650+70</u>	
lized		Surface gravity log g	[dex]	3.14+0.2	348+03	
rma	0.8	Micro turbulence, <i>v</i> _{micro}	[km/s]	1.2 ± 0.3	1.43 ± 0.2	
nc		Proj. surface rotation, $v \sin i$	[km/s]	4.7 ± 0.5	5.0 ± 0.5	
	o./ Secondary	Metallicity, [M/H]	[dex]	-0.37 ± 0.1	-0.38 ± 0.1	
	5160 5165 5170	Lithium, [Li/Fe]	[dex]	1.31 ± 0.008	2.55 ± 0.07	
	wavele	Light ratio	[%]	63±3	37±2	
	Difference, Δmag_V		[mag]	0.58±	8±0.08	
	Apparent magnitude		[mag]	10.32 ± 0.04	10.90±0.09)
	/					
		Apparent magnitude	[mag]	$10.32 {\pm} 0.04$	10.90±0.09	
	Difference, Δmag_V		[mag] 0.58±0.08			

Global Seismology

Global Seismology

Beck+ 2011, Science 332, 205 Bedding+ 2011, Nature 471,55 Mosser+ 2011, A&A 532, A86

Internal Structure & Dynamics

Evolutionary state

Period Spacing: ΔΠ₁=80" → Hydrogen-shell burning / RGB (for method: Mosser+ 2015, A&A 584, 50 + Refs)

Mass: 1.39M_o

Radius: 5.35R

Rotational Gradient

Core/Envelope : 6.9 ± 1.5 (seism)Core/Surface : 6.3 ± 1 (phot)

→ Flatter than average: 10-30x
→ Quasi rigid-rotation in Conv. Env.
Simplifies math for tides [poster 65]

Kippenhahn & Lithium

Result for a model from a mass grid around the mass from SR, calculated with with STAREVOL

Kippenhahn & Lithium

Result for a model from a mass grid around the mass from SR, calculated with with STAREVOL Collaboration with Stephane Mathis & Ana Palacios

Summary

- KIC9163796: eccentric, double-lined and seismic binary.
- Challenging analysis & big rewards, more to come
- Secondary Oscillations could be caught : TESS & Plato
- **Evolutionary state:** framing the dredge-up event
- Rotation:
 - Surface rotation not synchronized,
 - flat gradient (7 times)
 - Quasi-rigid rotation in envelope
- Lithium:
 - Difference of 1.2 dex
 - Is compatible with rigid rotation history

This binary in a striking example of how strong ~1% of difference in mass effects the stellar evolution

Oscillating double-lined binaries as test cases for **understanding Lithium** ASTROFIC surface abundancy

T

Paul G. Beck Instituto de Astrofisica de Canaries