## **Jakob Vinther ESO**

### Innsbruck ESO In-Kind Projects

Institute for Astro- and Particle Physics, University of Innsbruck 2009 – 2013

S. Kimeswenger, S. Noll, W. Kausch, A. Jones, C. Szyszka, M. Barden

- 1. <u>Sky Model</u> The Cerro Paranal Advanced Sky Model
- 2. <u>Molecfit</u> Correcting observations for telluric absorption
- 3. <u>Skycorr</u> Sky emission subtraction without plain sky information

Codes, manuals, tutorials, links, references:

www.eso.org/pipelines/skytools

## **Sky Model - Motivation**

- The expensive telescope time at large astronomical observatories has to be efficiently used
- S/N prediction of proposed astronomical observations with exposure time calculators (ETCs)
- Realistic model of the sky, including emission, absorption, and scattering processes in the Earth's atmosphere
- Development of sky brightness model for ETCs

Sky transmission curves [0-1] +-sigma

Sky radiance spectra (phot/s/m2/µm/arcsec2) +-sigma

Range: 0.3 – 30µm.

Resolution up to 10<sup>6</sup>



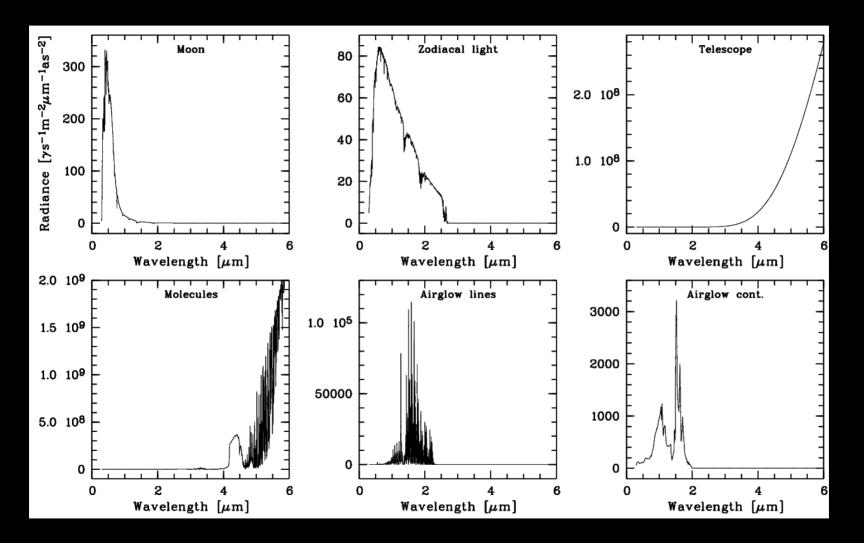
### Earth's atmosphere interacts with light

#### Additional influences:

- Moon
- Zodiacal light
- Telescope emission

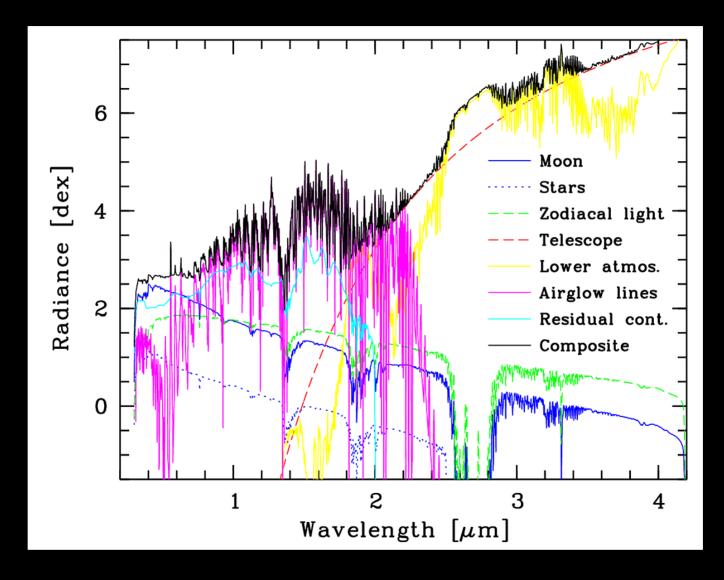
absorption

emission


scattering



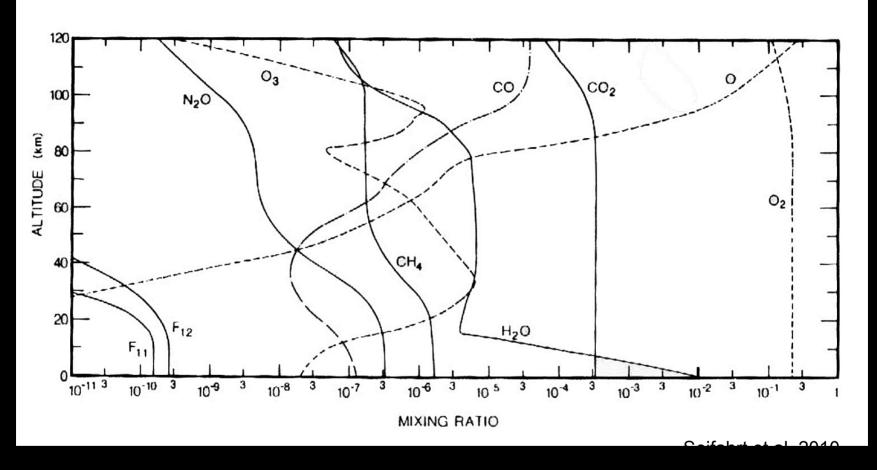



www.asc-csa.gc.ca

## **Sky Model Radiation Components**



General description (optical): Noll et al. 2012, A&A, 543, A92 Scattered moonlight model: Jones et al. 2013, A&A 560, A91


## **Sky Model Radiation Components**



## **Processes in the lower atmosphere**

- Scattering, absorption, and thermal radiation by molecules in the troposphere and stratosphere
- Calculation of spectra by atmospheric radiative transfer code LBLRTM (Line-By-Line Radiative Transfer Model)
- Required input:
  - HITRAN line data base (39 molecules and > 2.7 million lines)
  - Profiles of pressure, temperature, and molecular abundances

## **Atmospheric profiles**



**Optimisation for Cerro Paranal:** standard profiles (MIPAS@ENVISAT) + weather-dependent pressure, temperature, and humidity ( $H_2O$ ) from GDAS weather models (profiles up to 26 km; 1° x 1° and 3 h resolution), and ESO meteo monitor at 2.6 km

## Module 1 (slow) generating library (once)

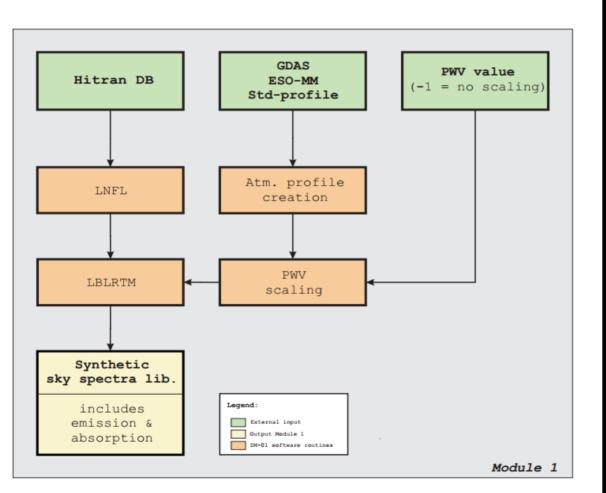



Figure 1: Module 1: This module creates a library of synthetic sky spectra on the basis of the HITRAN 2008 database and an atmospheric profile. The profile is created by merging the standard profile equ.atm (http://www.atm.ox.ac.uk/RFM/) and GDAS data (see [5] and Section 5), which provide information on temperature, pressure, and humidity of the selected observing site. Both, the HITRAN 2008 and the atmospheric profile, are used as input for the radiative transfer code LNFL/LBLRTM in order to calculate the sky spectrum.

Transmission Emission +-sigma

#### Parameter Grid:

- Airmass (5)
- Season (6+1) or
- PWV (8)

## Module 2 (fast) at ETC runtime

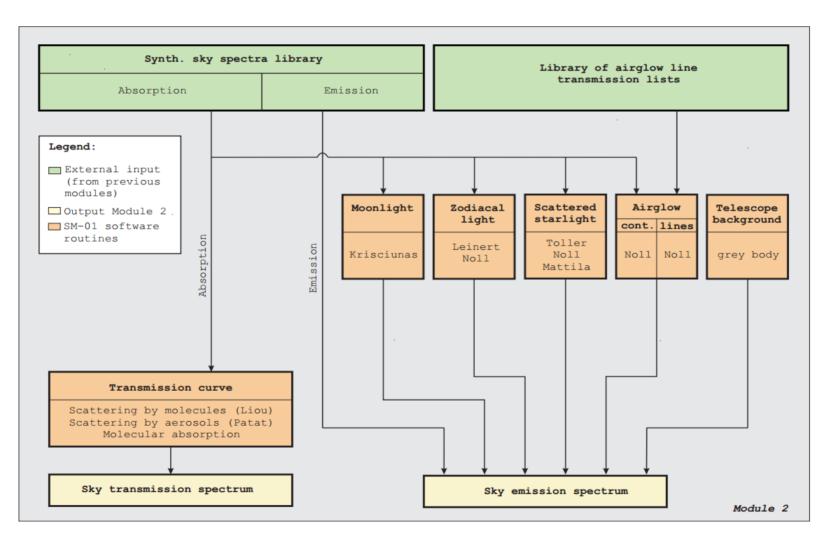
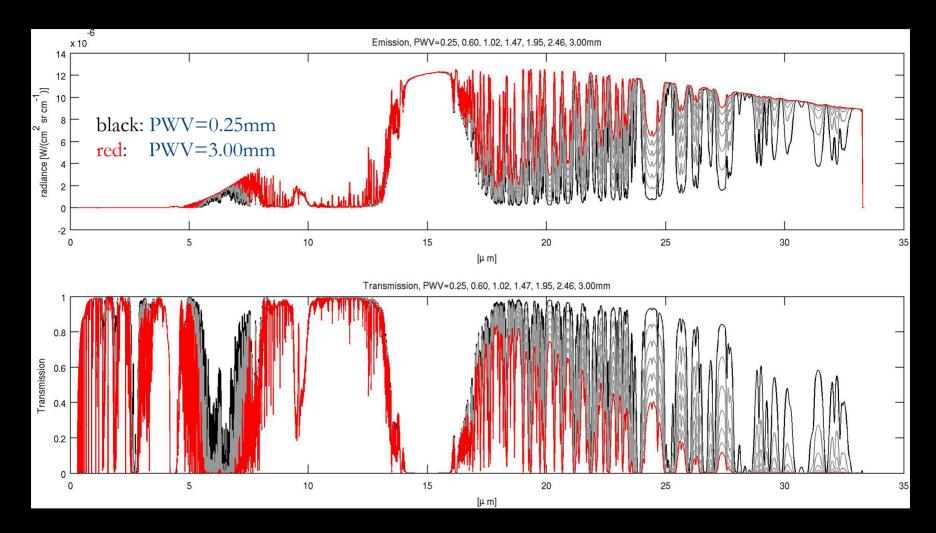
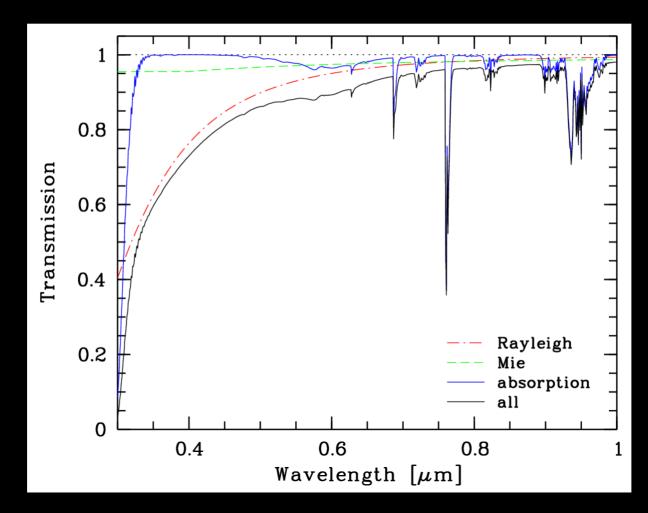
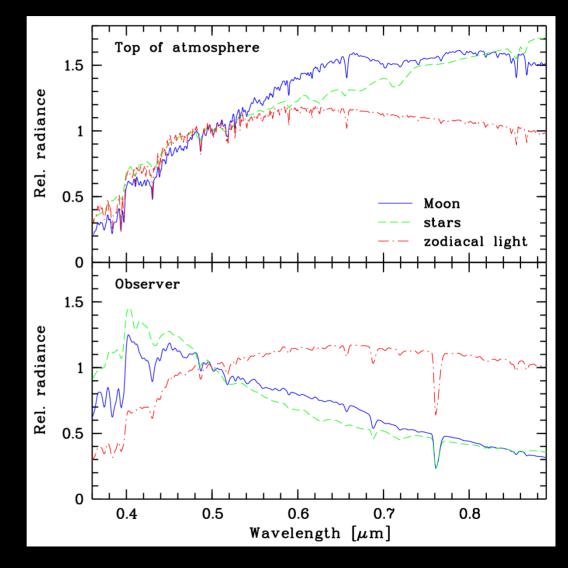




Figure 3: *Module 2* calculates the components, which need only minimal computing time. Hence, these components are computed during every ETC call. The final sky background spectrum is obtained by merging the appropriate synthetic sky spectrum from Module 1 (selected by user defined input) with these "fast" components.


## **Emission and transmission spectra**

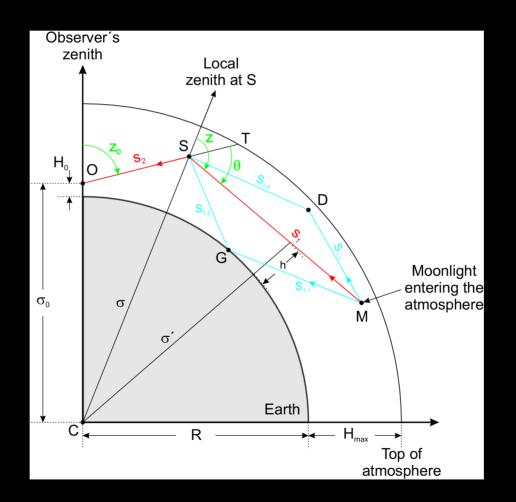


Changes in the water vapour content PWV of the atmosphere strongly affect sky emission and transmission spectra (especially in the thermal IR)


## **Atmospheric extinction**

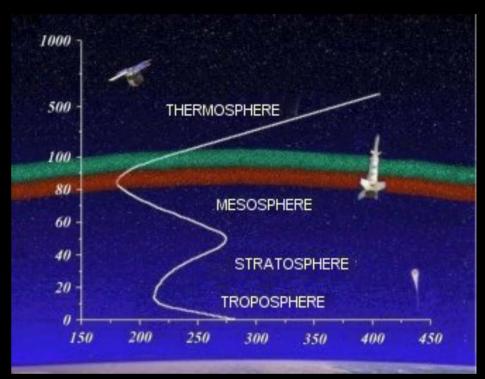
- Molecular absorption: LBLRTM calculations depending on season
- Rayleigh scattering (molecules): parametrisation by Liou (2002)
- Aerosol extinction: Ångström-law fit by Patat et al. (2011) for Paranal




## Moon, stars, and interplanetary dust

- Zodiacal light and integrated starlight: Leinert et al. (1998)
- Starlight spectrum: Mattila (1980)
- Moon albedo: ROLO (Kieffer & Stone 2005)
- Radiative transfer: own 3D scattering calculations (Noll et al. 2012; Jones et al. 2013)




## **Radiative transfer of moonlight**

 Single and double scattering at molecules, aerosols, and the ground with multiple scattering correction (Jones et al. 2013, A&A 560, A91)



## Airglow

- Chemiluminescence (light emission by chemical reactions)
- Solar UV radiation starts chain reactions by photochemical reactions (airglow reaction can be significantly delayed).
- Origin in mesopause / lower thermosphere region
   (P < 0.01 mbar ? thin gas)</li>
- Usually very thin emission layers of a few km thickness only

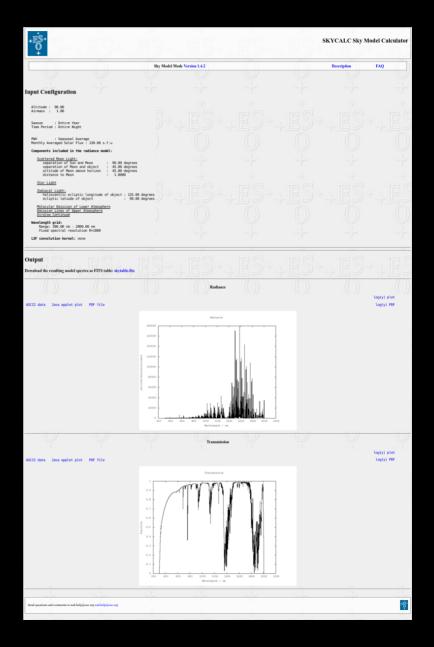



www.laser.inpe.br/lume/

## **Airglow variability**

- Diurnal variations (sun altitude)
- Seasonal variations
- 11-yr solar activity cycle
- Lunar variations (e.g. tides)
- Dependence on latitude
- Gravity waves (P > 5 min; caused by mountains / weather fronts)
- Longterm trend (→ climate change)

# Site-dependent semi-empirical airglow model required!






MASCOT/Paranal/ESO

### SkyCalc: Web interface to the Sky Model www.eso.org/observing/etc/skycalc

| Ê.                                                                           |                                                                                                                              |                                                                                         |                                                           |                                                                                                                         |                                                              |                                  |                         |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------|-------------------------|
| ∎≫+<br>O<br>+                                                                |                                                                                                                              |                                                                                         |                                                           |                                                                                                                         |                                                              | SKYCALC Sky M                    | lodel Calculat          |
|                                                                              |                                                                                                                              | Sky Model Mode                                                                          | Version 1.4.2                                             |                                                                                                                         |                                                              | Description                      | FAQ                     |
|                                                                              |                                                                                                                              |                                                                                         |                                                           |                                                                                                                         |                                                              |                                  |                         |
|                                                                              |                                                                                                                              | SkyC                                                                                    | ale Sky Mod                                               | lel Calculator                                                                                                          |                                                              |                                  |                         |
| a<br>R                                                                       | THE T                                                                                                                        | -1 (C 1 -                                                                               |                                                           | on using Almanac Service                                                                                                | TRICI                                                        | nd Cl                            |                         |
| All sky                                                                      | model parameters in the input form be<br>given time                                                                          | low can be <b>set manually</b> , b<br>and sky position at the Part                      | ut the time/coordinate depo<br>anal Observatory at geogra | endent ones can be <b>automatically</b> :<br>aphic latitude –24 <sup>°</sup> 37 <sup>°</sup> 38 <sup>°</sup> .64 , long | initialised using this <b>alman</b><br>gitude –70°24'17°.64. | ac service corresponding to a    | 40                      |
| ()                                                                           |                                                                                                                              | Date and UT                                                                             | time 🗇 🛛 Jan 💌 2014                                       |                                                                                                                         |                                                              |                                  | (                       |
|                                                                              |                                                                                                                              |                                                                                         | rial coordinates R.A. α-                                  |                                                                                                                         |                                                              |                                  | 1 all                   |
| 4                                                                            |                                                                                                                              |                                                                                         | update for                                                | m                                                                                                                       |                                                              |                                  |                         |
|                                                                              | +                                                                                                                            | +                                                                                       | +                                                         | +                                                                                                                       | +                                                            |                                  |                         |
|                                                                              |                                                                                                                              | The C                                                                                   | erro Paranal Adv                                          | vanced Sky Model                                                                                                        |                                                              |                                  |                         |
| of Target above Horizon                                                      | Alt=90.00 [19.5, 90]* Alt<br>X = 1.00 [1, 3] z be                                                                            | and X are coupled through<br>to parallel approximation X<br>ing the zenith distance z=9 | the<br>$\Gamma$ -sec(z),                                  |                                                                                                                         |                                                              |                                  |                         |
| and Period of Night                                                          | Season: Entire year *                                                                                                        | ing me zenim utsance 2-9                                                                | 0 - All                                                   |                                                                                                                         |                                                              |                                  |                         |
| able Water Vapor PWV                                                         | Night Period: Entre Nght *<br>Seasonal Average (see above)                                                                   |                                                                                         |                                                           |                                                                                                                         |                                                              |                                  |                         |
|                                                                              | o PWV = select* mm (Paran                                                                                                    | al median = 2.5mm)                                                                      |                                                           |                                                                                                                         |                                                              |                                  |                         |
| Averaged Solar Flux                                                          | 130.00 s.f.u                                                                                                                 |                                                                                         |                                                           |                                                                                                                         |                                                              |                                  |                         |
| ment <sub>1</sub> (e.g. Telescope) T                                         | mosphere<br>nal Continuum)<br>resents an instrumental effect. The emi<br>the documentation).<br>1 = 0.0 K Emissivity, = 0.00 | [0,1]                                                                                   | the other model componer                                  | nts. To obtain the correct absolute_                                                                                    | flux, an instrumental respo                                  | use curve must be applied to b   | he resulting model      |
| ment <sub>2</sub> (e.g. Instrument) T<br>ment <sub>3</sub> (e.g. Cryostat) T | 3 = 0.0 K Emissivity3 = 0.00                                                                                                 | [0,1]<br>[0,1]                                                                          |                                                           |                                                                                                                         |                                                              |                                  |                         |
| ength Grid (in Vacuu                                                         |                                                                                                                              |                                                                                         | ne Spread Function                                        |                                                                                                                         |                                                              |                                  |                         |
| 00.00 nm [ ≥ 300 nm<br>2000.00 nm [ ≤ 30,000                                 |                                                                                                                              | <ul> <li>None</li> <li>Gaussian FW</li> </ul>                                           |                                                           |                                                                                                                         |                                                              |                                  |                         |
| xed Wavelength Step $\Delta \lambda$ .                                       | 0.10 nm/bin                                                                                                                  | <ul> <li>Boxcar We</li> </ul>                                                           | dth=5.00 bins                                             |                                                                                                                         |                                                              |                                  |                         |
| xed Spectral Resolution B<br>899 bins<br>ion R : 1000 (max 100000            | 90)                                                                                                                          |                                                                                         |                                                           |                                                                                                                         |                                                              |                                  |                         |
| le size: 0.11Mb (max 30 M<br>. response time: 3 s                            | th)                                                                                                                          |                                                                                         |                                                           |                                                                                                                         |                                                              |                                  |                         |
| Radiancie Spectrum<br>Transmission Spectrum<br>date Broad, Band URVRI        | ZYJHKLMNQ magnitudes per arcsec                                                                                              | 1                                                                                       |                                                           |                                                                                                                         |                                                              |                                  |                         |
| SF Kernel (select an LSP                                                     | F kernel to enable this option)                                                                                              |                                                                                         |                                                           |                                                                                                                         |                                                              |                                  |                         |
|                                                                              |                                                                                                                              |                                                                                         | Submit F                                                  | Reset ES+                                                                                                               |                                                              |                                  |                         |
| SkyCalc is based on t<br>Physics at the Univer-                              | he Cerro Paranal Advanced Sky Mode<br>sity of Innsbruck, as part of an Austria                                               | l, which was developed in p<br>n in-kind contribution to El                             | oarticular to be used in the<br>50.                       | ESO Exposure Time Calculators, I                                                                                        | by a team of astronomers at                                  | the Institute for Astro- and P   | tarticle                |
| The in-kind contribut                                                        | ion also includes two tools to correct o                                                                                     | bservations for telluric abs                                                            | orption and emission (Mol                                 | ecfit and Skycorr), which can be fo                                                                                     |                                                              |                                  | 1                       |
|                                                                              | Cerro Paranal Sky Model are Noll et a<br>commission spectra with various resol                                               |                                                                                         |                                                           |                                                                                                                         | d Sky Model. A description                                   | of the usare of the spectra car  | n be found in           |
| the article Mochler et                                                       | unsmission spectra with various resols<br>al. (2014, AdA 568, A9).                                                           | anna ann annageachte tom                                                                | antone was record carefulation                            | and the server of an and databased                                                                                      | any sources a manapulant                                     | iy ine angge of one apretira cur | , c. , ound in          |
|                                                                              |                                                                                                                              | -1 (5)                                                                                  |                                                           |                                                                                                                         | ment (col                                                    | Send questions and               | comments to und-help in |
|                                                                              |                                                                                                                              |                                                                                         |                                                           |                                                                                                                         |                                                              |                                  |                         |



### **SkyCalc numerical output**

### skytable.fits

| jvinther@pc017890:~\$<br>jvinther@pc017890:~\$<br>jvinther@pc017890:~\$ dfits skytable.fits                                  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| ====> file skytable.fits (main) <====                                                                                        |  |  |  |  |  |  |
| SIMPLE = T / file does conform to FITS standard                                                                              |  |  |  |  |  |  |
| BITPIX = 16 / number of bits per data pixel<br>NAXIS = 0 / number of data axes                                               |  |  |  |  |  |  |
|                                                                                                                              |  |  |  |  |  |  |
| EXTEND = T / FITS dataset may contain extensions                                                                             |  |  |  |  |  |  |
| COMMENT FITS (Flexible Image Transport System) format is defined in 'Astronomy                                               |  |  |  |  |  |  |
| COMMENT and Astrophysics', volume 376, page 359; bibcode: 2001A&A376359H                                                     |  |  |  |  |  |  |
| TE = '2015-09-22T14:33:31' / file creation date (YYYY-MM-DDThh:mm:ss UT)                                                     |  |  |  |  |  |  |
| COMMENT                                                                                                                      |  |  |  |  |  |  |
| <pre>MENT ESO SkyCalc www.eso.org/observing/etc/skycalc/skycalc.htm</pre>                                                    |  |  |  |  |  |  |
| COMMENT Documentation www.eso.org/observing/etc/doc/skycalc/helpskycalc.html                                                 |  |  |  |  |  |  |
| COMMENT References: Noll et al. (2012, A&A 543, A92)                                                                         |  |  |  |  |  |  |
| and Jones et al. (2013, A&A 560, A91)                                                                                        |  |  |  |  |  |  |
| COMMENT                                                                                                                      |  |  |  |  |  |  |
| COMMENT column lam: vacuum wavelength in micron                                                                              |  |  |  |  |  |  |
| COMMENT column flux: sky emission radiance flux in ph/s/m2/micron/arcsec2                                                    |  |  |  |  |  |  |
| COMMENT column dflux1: sky emission -1sigma flux uncertainty                                                                 |  |  |  |  |  |  |
| COMMENT column dflux1: ský emission -1sigma flux uncertainty<br>COMMENT column dflux2: sky emission +1sigma flux uncertainty |  |  |  |  |  |  |
| COMMENT column dtrans: sky transmission                                                                                      |  |  |  |  |  |  |
| COMMENT column dtrans1: sky transmission -1sigma uncertainty                                                                 |  |  |  |  |  |  |
| COMMENT column dtrans2: ský transmission +1sigma uncertainty                                                                 |  |  |  |  |  |  |
| COMMENT                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                              |  |  |  |  |  |  |
|                                                                                                                              |  |  |  |  |  |  |
|                                                                                                                              |  |  |  |  |  |  |
|                                                                                                                              |  |  |  |  |  |  |
|                                                                                                                              |  |  |  |  |  |  |
|                                                                                                                              |  |  |  |  |  |  |
|                                                                                                                              |  |  |  |  |  |  |
|                                                                                                                              |  |  |  |  |  |  |

### **ASCII (plots)**

| 1000    | 561.866            |
|---------|--------------------|
| 1000.05 | 561.163            |
|         | 561.813            |
|         | 561.438            |
| 1000.2  | 559.054            |
| 1000.25 | 10568.8            |
| 1000.3  | 10569.3            |
|         | 626.353            |
| 1000.4  | 562.096            |
| 1000.45 | 562.056            |
|         | 616.288            |
|         | 616.427            |
| 1000.6  | 562.225            |
| 1000.65 | 562.256            |
| 1000.7  | 562.256<br>562.287 |
| 1000.75 | 562.318            |
| 1000.8  | 562.349            |
|         | 562.379            |
|         | 562.41             |
|         | 562.441            |
| 1001    | 562.472<br>562.502 |
| 1001.05 | 562.502            |
| 1001.1  | 562.532            |
| 1001.15 | 562.562            |
|         | 562.587            |
| 1001.25 | 562.582            |
| 1001.3  | 561.926            |
|         | 561.764            |
| 1001.4  | 13797.4            |
| 1001.45 | 561.619            |
| 1001.5  | 562.054            |
| 1001.55 | 125607             |
| 1001.6  | 562.827            |
| 1001.65 | 21885.7            |
|         | 21884.5            |

### **Sky correction tools**

**Molecfit** - Correcting observations for telluric absorption

Skycorr - Sky emission subtraction without plain sky information

www.eso.org/pipelines/skytools



### absorption

**Required:** transmission spectrum

#### Telluric standard stars:

- hot stars without/with few, well known intrinsic spectral features (B-type)
- observation in the vicinity, at least same airmass than science target
- observation directly before/after the science target



#### molecfit

#### emission

**Required:** airglow spectrum

#### Plain sky observations:

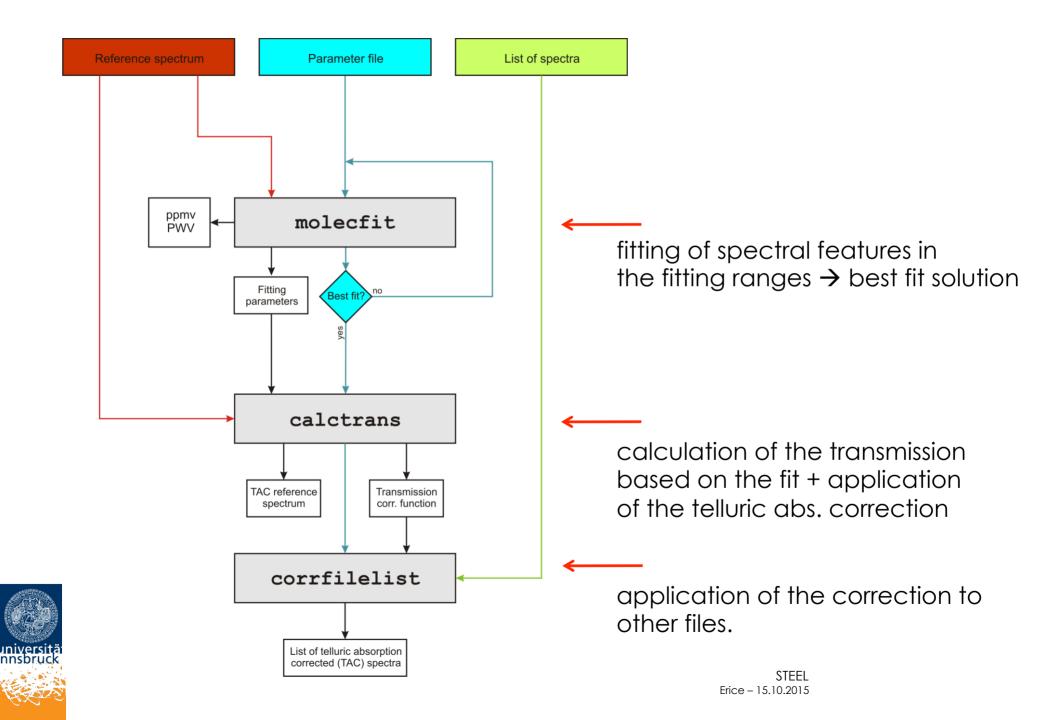
- LSS: portion of the slit w/o object
- specific sky spectrum taken before/after the science target and
- taken in the very vicinity of the science target
- same exposure time



### Telluric Absorption Correction with molecfit

### Basic idea ([1],[2]):

- derive the atmospheric state from its fingerprint in the science spectra
- calculation of synthetic transmission spectra corresponding to this state by means of a radiative transfer code
- iteratively fitting these spectra to absorption features in science spectra
- use the best-fit transmission for the telluric absorption correction


#### Features:

- comprehensive software suite for telluric absorption correction
- instrument independent
- world-wide use
- based on Ansi-C  $\rightarrow$  high compatibility (Linux+MacOS)
- freely available\*

[1] Smette et al. 2015, A&A, 576, A77 [2] Kausch et al. 2015, A&A, 576, A78 \*http://www.eso.org/pipelines/skytools



### Telluric Absorption Correction with molecfit



### **Molecfit Limitations**

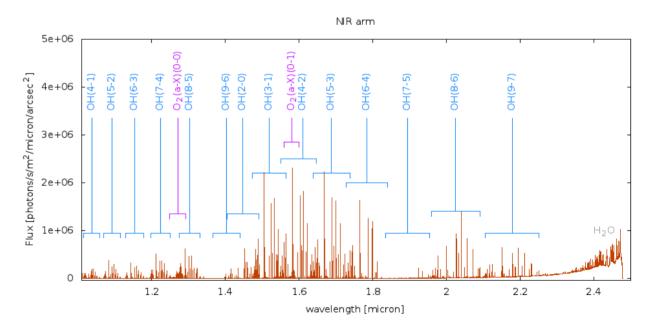
#### External:

- Accuracy of the line database
- Radiative transfer code accuracy
- Initial atmospheric profile

#### Internal:

- Low S/N spectra cannot be fitted reliably
- Number of fitting parameters (I-fit, continuum, LSF,....)
- Intrinsic spectral features of the object
- Resolution

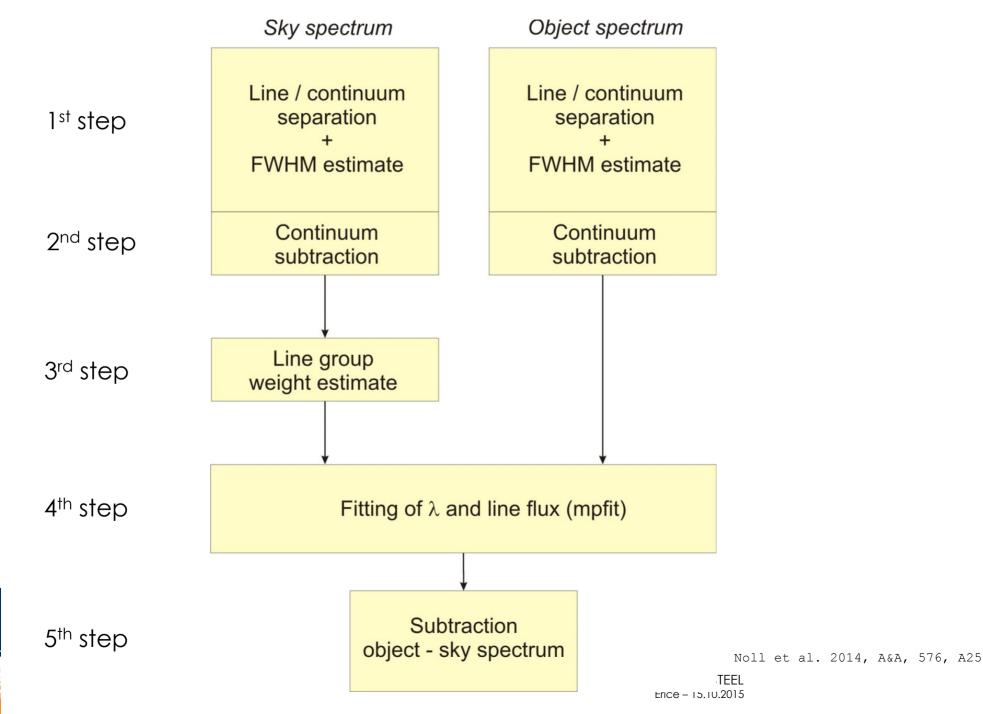



### Sky emission removal with skycorr

#### Basic idea ([1], [2]):

- Use an arbitrary plain sky spectrum of the same instrument/setup (archive)
- Iteratively fitting OH line groups individually to corresponding OH emission features in science spectra
- Use the best-fit sky spectrum for the sky emission removal

#### Features:


- Comprehensive software suite for sky emission removal
- Instrument independent
- world-wide use
- based on Ansi-C
- freely available\*



[1] Davies, 2007, MNRAS, 375, 1099
[2] Noll et al., 2014, A&A, 576, 25
\*http://www.eso.org/pipelines/skytools



### Sky emission removal with skycorr



iniversi

### **Skycorr Limitations**

- Accuracy of the incorporated line lists
- Airglow model
- Atmospheric conditions (transparency)
- Instrumental calibration
- Number of fitting parameters (lambda, line groups,...)
- Spectral resolution
- Intrinsic spectral features of the object

