

The Simulation team in Vienna

Kieran Leschinski and Oliver Czoske

Joao Alves, Werner Zeilinger, Rainer Köhler, Michael Mach

What is SimCADO?

SimCADO is a python package which

allows one to simulate mock

detector array readouts based on the
current design of MICADO

SimCADO mimics changes to the incoming source
photons and produce detector-array readout files

● the atmosphere
● the E-ELT
● MICADO
● the detector plane array

MICADO H4RGTelescopeAtmosphere

Source

● Wide-field mode
53” FoV with 4mas/pixel

● Zoom mode
16” FoV with 1.5mas/pixel

● Spectroscopy mode
R~4000 with 3” slit

● 0.7 – 2.4µm (IYJHK)

● Diffraction limited

● MCAO and SCAO

MICADO will be the E-ELT's NIR wide-field imager

● SimCADO does neither ray-tracing nor
physical optics
Enough said

Things to know about SimCADO

● SimCADO is designed to run on a laptop
Limited to ~4GB RAM and ~4 cores

● SimCADO combines data supplied by
other work packages

E.g. MAORY, SCAO PSFs, detector layout, distortion...
SimCADO is only as accurate as the input data given to

us from sub-package simulations

MAORY Ks band PSF (2.2µm)

http://iopscience.iop.org/article/10.1088/1748-0221/9/04/C04010/pdf

Why build SimCADO?

Astronomical community
For testing out the observability of

future science cases as well as
preparing observations and/or

optimising observation strategies

SimCADO has 4 potential user groups

Science Team
For determining the observable

limits and feasibility of science
cases

Data flow team
For generating mock input data
for the development of the various

data flow pipelines

Instrument design team
For visualising the effect of

different components on the
science quality of the output images

How does SimCADO work?

SimCADO mimics changes to the incoming source
photons to produce detector-array readout files

● the atmosphere
● the E-ELT
● MICADO
● the detector plane array

MICADO H4RGTelescopeAtmosphere

Source

The MICADO optical train contains between 25
and 35 elements

● Collimator and Re-imager
● 2x Filter wheels
● Mask wheel
● ADC
● Derotator
● 3x3 H4RG detector array
● Between 9 and 20 mirrors

(excl./inc. MAORY)

A. 1.5mas imager (4 fixed mirrors)

B. 4mas imager (2 flat fold mirrors)

C. Cross-dispersed Spectroscopy (2 gratings)

D. Pupil imager (2 flat fold mirrors + 1 lens)

A.

B.

C.

D.

Each element affects the incoming photons
differently

Spatial (x,y)
● translation
● rotation
● distortion
● vibration
● ...

Spectrospatial (x,y,λ)
● PSFs
● atmospheric dispersion
● ...

Spectral (λ)
● throughput
● atmospheric emission
● blackbody emission
● ...

How does SimCADO simulate?

Detector

SimCADO contains 3 workhorse classes

OpticalTrainSource

Source objects contain 2 tables

Source

Table 2 [..λ..]
contains a list of unique spectra

Table 1 (x,y,ref,w)
contains the positions of sources

and references to their spectra

OpticalTrain holds a collection of transformations that

need to be applied to the Source

OpticalTrain

● psfs
● transmission curves
● tracking shifts
● rotations
● distortions

Each object in OpticalTrain represents the sum
of a specific type of effects

OpticalTrain

For example:
OpticalTrain.tc_source

contains the product of all
relevant transmission curves
from the source to the
detector

Detector

Detector describes the geometry of the focal plane
array and contains a list of Chip objects

Detector contains
the physical information
about the focal plane
array

Chip objects contain
the “images” data

Source.apply_optical_train(OpticalTrain)

The main body of the simulation is executed when this method
is called, namely:

● all transformations are applied to the tables (where possible)
● an image is generated
● image operations are executed (rotation, jitter, ...)
● image is placed “on” the Detector Chips

OpticalTrain.Detector.Readout()

● noise is added (all forms)

● the Chips are read out
according to the desired readout
scheme (e.g. Up-the-ramp,
Fowler, …)

● a FITS file is created (or astropy
HDUList object)

Controlling SimCADO can be done in two ways:

ASCII configuration file
Pass a “SExtractor”-style config file
with the relevant parameters when
using SimCADO via the CLI

UserCommands object
Contains all the default parameters and
can be changed interactively in iPython

OBS_FOV 16 # [arcsec] side length of the field of view
OBS_EXPTIME 60 # [sec] simulated exposure time
OBS_NDIT 60 # [#] number of exposures taken
OBS_NONDESTRUCT_TRO 1.3 # [sec] time between non-destructive readouts
OBS_REMOVE_CONST_BG yes # remove the minimum background value

OBS_INPUT_DIR none #
OBS_INPUT_NAME none #
OBS_FITS_EXT 0 # the FITS extension number

###
Parameters relating to the simulation

SIM_OVERSAMPLING 1 # The factor of oversampling inside the simulation
SIM_DETECTOR_PIX_SCALE 0.004 # [arcsec] plate scale of the detector
SIM_PIXEL_THRESHOLD 1 # photons/pixel summed over the wavelength range

Let's play
(demo of SimCADO)

3rd party code

SkyCalc provides model atmospheric transmission
and emission data

https://www.eso.org/observing/etc/bin/gen/form?INS.MODE=swspectr+INS.NAME=SKYCALC

Developed by the IAT in Innsbruck for ESO

JWST POPPY generates PSFs for mirrors
comprised of N hexagonal segments

● Scalable to 39m, however circular mirrors are difficult
● Generates ideal case PSFs, i.e. an unrealistic perfect AO system
● Installable via pip, conda, easy_install, ...

https://pythonhosted.org/poppy/

Bernhard Rauscher's HxRG Noise Generator

Python code which does exactly what the name suggests

Scalable for all detectors in the Hawaii RG series

Rauscher, 2015 - http://adsabs.harvard.edu/abs/2015PASP..127.1144R

http://jwst.nasa.gov/publications.html

Restricted by the amount of RAM
in a typical laptop (~4 to 8GB)

Memory requirements for brute force approach
4k x 4k : 16 Mpixel
4 btye / pixel : 64 MB
9 chips : 576 MB
4x oversampling : 9.2 GB
R ~ 40 : 64 GB

Novel solutions were found to circumvent
SimCADO's thirst for RAM

The main problems were related to computer
memory and lack of input data

Much data is not yet available. This
caused us to make assumptions about
various aspects:

e.g.
● Distortion map
● MAORY / SCAO PSF cubes
● ADC specs
● Detector Persistence, Linearity
● …..

Re-capping SimCADO

● is a distributable python package

● combines results from other MICADO work packages

● simulates detector readouts on a laptop

● decentralises the simulation effort

● produces simulations quickly and efficiently

Discussion

How does SimCADO fit into the instrument
simulator landscape?

● How do the users interact with your simulators?

● What kinds of infrastructure are needed to run the
simulations?

● How will the simulator change with time as the instruments
become more developed?

● Is the simulator mainly used by the science team, or does the
design team also play with it?

● Is anyone dealing with variable IR backgrounds?

● What testing structures do you use?

● How did you solve the memory problems?

Questions for the Audience

	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 42
	Folie 43
	Folie 44
	Folie 45

