
Developing an instrument
simulator for HARMONI

E-ELT Data Simulation Workshop

Munich, 14th April 2016

A. Jarno, A. Pécontal, L. Piqueras

 First light Integral Field Spectrograph
 Large spectral band 0.47 – 2.45 μm
 FoV 152 x 214 = 32 528 spaxels
 4 FoV scales:

 6.42’’x9.12’’, 3.04’’x4.28’’,
1.52’x2.14’’, 0.61’’x0.86’’

 4 spectral resolutions:
 R=400, R=3500, R=8000, R=20000

E-ELT/HARMONI

HARMONI Science Software
 CRAL is responsible for the HARMONI

Science Software
 Data Reduction System (Pipeline)
 Instrument Numerical Model

Aurélien JarnoLaure PiquerasArlette Pécontal

Why an instrument simulator
for HARMONI?

 Used to develop the data reduction pipeline
 Also a tool to understand the instrument

 Inputs for performance-related trade-offs
 Early verification of the instruments performances
 Preparation of test and calibration campaigns
 Validation or pre-validation of specifications before the on-

sky commissioning
 Providing synthetic detector readouts for

 the development of various software (AIV, data analysis)
 the science preparation

The instrument simulators
developed at CRAL

 JWST/NIRSpec
 Space based instrument
 Imager / Long slit

spectroscopy / MOS / IFS
 NIR range: 0.6-5µm
 Industrial context (ESA,

EADS Astrium)

 VLT/MUSE
 Ground based instrument
 IFS
 Visible range : 465-930 nm
 Developed internally in the

consortium

Example of MUSE (1)

 Single star

Example of MUSE (2)

 Lyman-alpha emitter

Example of MUSE (3)

 Calibration exposures
 FITS headers

Example of MUSE (4)

 Typical simulated scenes

Star field Deep field

Principle of the simulator

 From incident photons to electrons
 Fourier optics propagation and PSF convolution
 Taking into account optical aberrations, wavefront errors,

diffraction effects

 Taking into account realistic coordinate transforms
 Modeling the dispersers

How is light
spread on the

detectors?

Where does it
go?

How many
photons make

it into
electrons?

 Include information about the transmission/efficiency of
the instrument

 Taking into account slit/diffraction losses
 Detector radiometric response

 From electrons to ADU

How electrons
are counted?

 Detectors effects
 Read-out process and effects

 Instrument divided into optical modules
 Wave-front propagation between pupil and

image planes using Fourier transforms (and
vice versa)

 Aberrations introduced using an equivalent
wavefront error mask extracted from Zemax
 Variable within the FoV
 Variable with the wavelength

 PSFs can be computed on the fly for
each optical module at multiple
positions and wavelengths

F
P

R

el
ay

P
re

-o
pt

ic
s

IF
U

S
pe

ct
ro

gr
ap

h

Fourier optics

 Design coordinate transforms maps produced by ZEMAX
 Possibility to use measured maps
 Maps are used to produce a parametric model of the

coordinates transform (3D polynomial)
 Dispersers modeled analytically

 Dilution function computed as |det(JP(x,y,λ))|

Coordinate transforms

Create a barrel coordinate transforms map
px = np.array([[0.0, 0.0, 0.0, 0.0],
 [1.0, 0.0, ­0.1, 0.0],
 [0.0, 0.0, 0.0, 0.0],
 [­0.1, 0.0, 0.0, 0.0]])
py = np.array([[0.0, 1.0, 0.0, ­0.1],
 [0.0, 0.0, 0.0, 0.0],
 [0.0, ­0.1, 0.0, 0.0],
 [0.0, 0.0, 0.0, 0.0]])

Atmosphere simulation
 Seeing

 Modeled as a PSF variable over FoV and wavelength
 Simulations done by AO team (LAM)
 Also includes other telescope effects (pointing, wind

shake, etc.)

 Atmospheric refraction
 Depends on temperature, humidity, pressure
 Depends on the parallactic angle, which varies during

the exposure. We apply the integrated effect
 for visible detectors during the whole exposure
 for IR detectors between two readouts

 Sky background and absorption lines
 Modeled using ESO SKYCALC Sky Model Calculator

Detector modeling
 Reproduce the conversion from photons to electrons and to ADU

 Chromatic part
 Sampling
 Quantum efficiency
 Inter and intra-pixel sensitivity

 Non chromatic part
 Cosmetics (hot/dark pixels/columns/clusters, traps)
 Dark current
 Shot noise
 Non linearity
 Charge transfer efficiency
 Read-out noise
 Conversion into ADU
 Cosmic rays

Zoom on pinholes in the electron rate map

Exposure simulation with NIRSpec
DM detector (zoom on pinholes and
SCA491)

Exposure simulator (1)

 Glue between the previous software components to produce
synthetic exposures

 Input data for on sky exposures
 Astrophysical scene: set of "objects" (small cube) with their

location
 Sky coordinates
 Date and time of observation
 Atmospheric conditions (seeing, temperature, humidity,

pressure, etc.)
 Input data for calibration exposures

 Calibration unit setup (lamps, masks, …)
 Date and time of observation

Exposure simulator (2)

Optical module
simulator

Image maskThroughput

Fourier
optics

Coordinate
transforms

Atmosphere
simulator

Detectors
simulator

(chromatic)

Loop on optical module

Loop on each input cube

Detectors
simulator

(achromatic)

Electron
Rate Map

Input
objects

Sky
background

Lessons learned: schedule
and development methods

 A good phasing with the project is essential to make an
instrument simulator useful
 Needs a lot of data/information from the project
 Living software which evolves as the instrument is being

built
 Can help developing data reduction and data analysis

software
 Can help doing strategic choices

➔ Therefore:
➔ Flexible development methods
➔ Most demanded feature: exposure simulator
➔ Consider releasing exposures instead of software (at least

during the development)

Lessons learned: track
assumptions and limitations

 Usual initial goal: make the simulator as generic as
possible

 Then comes the optimization time: adding
assumptions and limitations

 It is essential to track the assumptions and
limitations
 In case of design changes (both simulator and

instrument)
 For future developers of the software
 For the users (both of the software and simulated

exposures)

Lessons learned: interfaces

 An instrument simulator manipulates a lot of data from
various sources
 Instrument model: optical design, wavefront maps,

throughput, etc.
 Astrophysical scenes: cubes, images, spectra, etc.

➔ Use an interface control document
 Should evolve with the developments if needed
 Should be discussed with the users

➔ Define a common vocabulary between all people
 Difficulties to get measured data from suppliers in a given

format, sometimes even in a numerical format

Lessons learned: building
instrument models

 Garbage in, garbage out principle: the main limitation
comes from
 the instrument knowledge
 the availability and the quality of the characterization

data
➔ Participation to the AIV phase proved to be useful
 Building instrument models requires

 A good knowledge of the instrument
 A good knowledge of the simulator
 A good knowledge of the science that will be done

➔ Models should be created with the help of a scientist
with strong instrumentation background

Lessons learned:
programming language

 Instrument simulators are CPU and memory intensive
➔ Fined-grain memory control
➔ Multithreaded code

 Both MUSE and NIRSpec instrument simulators were
fully developed in C++

 HARMONI instrument simulator will be developed
 Mostly in Python
 C/C++ for the computation intensive parts

Conclusion

 The HARMONI is project now in phase B
 The optical design is still changing a lot
 Currently in the early design phase of the

instrument simulator
 Mostly prototyping things
 Testing new ideas

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22

