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 First light Integral Field Spectrograph
 Large spectral band 0.47 – 2.45 μm
 FoV 152 x 214 = 32 528 spaxels
 4 FoV scales:

 6.42’’x9.12’’, 3.04’’x4.28’’, 
1.52’x2.14’’, 0.61’’x0.86’’

 4 spectral resolutions:
 R=400, R=3500, R=8000, R=20000

E-ELT/HARMONI



HARMONI Science Software
 CRAL is responsible for the HARMONI 

Science Software
 Data Reduction System (Pipeline)
 Instrument Numerical Model

Aurélien JarnoLaure PiquerasArlette Pécontal



Why an instrument simulator 
for HARMONI?

 Used to develop the data reduction pipeline
 Also a tool to understand the instrument

 Inputs for performance-related trade-offs
 Early verification of the instruments performances
 Preparation of test and calibration campaigns
 Validation or pre-validation of specifications before the on-

sky commissioning
 Providing synthetic detector readouts for

 the development of various software (AIV, data analysis)
 the science preparation



The instrument simulators 
developed at CRAL

 JWST/NIRSpec
 Space based instrument 
 Imager / Long slit 

spectroscopy / MOS / IFS
 NIR range: 0.6-5µm
 Industrial context (ESA, 

EADS Astrium)

 VLT/MUSE
 Ground based instrument
 IFS
 Visible range : 465-930 nm
 Developed internally in the 

consortium



Example of MUSE (1)

 Single star



Example of MUSE (2)

 Lyman-alpha emitter



Example of MUSE (3)

 Calibration exposures
 FITS headers



Example of MUSE (4)

 Typical simulated scenes

Star field Deep field



Principle of the simulator

 From incident photons to electrons
 Fourier optics propagation and PSF convolution
 Taking into account optical aberrations, wavefront errors, 

diffraction effects

 Taking into account realistic coordinate transforms
 Modeling the dispersers

How is light 
spread on the 

detectors?

Where does it 
go?

How many 
photons make 

it into 
electrons?

 Include information about the transmission/efficiency of 
the instrument 

 Taking into account slit/diffraction losses 
 Detector radiometric response

 From electrons to ADU

How electrons 
are counted?

 Detectors effects
 Read-out process and effects



 Instrument divided into optical modules
 Wave-front propagation between pupil and 

image planes using Fourier transforms (and 
vice versa)

 Aberrations introduced using an equivalent 
wavefront error mask extracted from Zemax
 Variable within the FoV
 Variable with the wavelength

 PSFs can be computed on the fly for
each optical module at multiple
positions and wavelengths
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 Design coordinate transforms maps produced by ZEMAX
 Possibility to use measured maps
 Maps are used to produce a parametric model of the 

coordinates transform (3D polynomial)
 Dispersers modeled analytically

 Dilution function computed as |det(JP(x,y,λ))|

Coordinate transforms

# Create a barrel coordinate transforms map
px = np.array([[ 0.0,  0.0,  0.0,  0.0],
               [ 1.0,  0.0, ­0.1,  0.0],
               [ 0.0,  0.0,  0.0,  0.0],
               [­0.1,  0.0,  0.0,  0.0]])
py = np.array([[ 0.0,  1.0,  0.0, ­0.1],
               [ 0.0,  0.0,  0.0,  0.0],
               [ 0.0, ­0.1,  0.0,  0.0],
               [ 0.0,  0.0,  0.0,  0.0]])



Atmosphere simulation
 Seeing

 Modeled as a PSF variable over FoV and wavelength
 Simulations done by AO team (LAM)
 Also includes other telescope effects (pointing, wind 

shake, etc.)

 Atmospheric refraction
 Depends on temperature, humidity, pressure
 Depends on the parallactic angle, which varies during 

the exposure. We apply the integrated effect
 for visible detectors during the whole exposure
 for IR detectors between two readouts

 Sky background and absorption lines
 Modeled using ESO SKYCALC Sky Model Calculator



Detector modeling
 Reproduce the conversion from photons to electrons and to ADU 

 Chromatic part
 Sampling
 Quantum efficiency
 Inter and intra-pixel sensitivity

 Non chromatic part
 Cosmetics (hot/dark pixels/columns/clusters, traps)
 Dark current
 Shot noise
 Non linearity
 Charge transfer efficiency
 Read-out noise
 Conversion into ADU
 Cosmic rays

Zoom on pinholes in the electron rate map

Exposure simulation with NIRSpec 
DM detector (zoom on pinholes and 
SCA491) 



Exposure simulator (1)

 Glue between the previous software components to produce 
synthetic exposures

 Input data for on sky exposures
 Astrophysical scene: set of "objects" (small cube) with their 

location
 Sky coordinates
 Date and time of observation
 Atmospheric conditions (seeing, temperature, humidity, 

pressure, etc.)
 Input data for calibration exposures

 Calibration unit setup (lamps, masks, …)
 Date and time of observation



Exposure simulator (2)

Optical module
simulator

Image maskThroughput

Fourier
optics

Coordinate
transforms

Atmosphere
simulator

Detectors
simulator

(chromatic)

Loop on optical module

Loop on each input cube

Detectors
simulator

(achromatic)

Electron 
Rate Map

Input
objects

Sky 
background



Lessons learned: schedule 
and development methods

 A good phasing with the project is essential to make an 
instrument simulator useful
 Needs a lot of data/information from the project
 Living software which evolves as the instrument is being 

built
 Can help developing data reduction and data analysis 

software
 Can help doing strategic choices

➔ Therefore:
➔ Flexible development methods
➔ Most demanded feature: exposure simulator
➔ Consider releasing exposures instead of software (at least 

during the development)



Lessons learned: track 
assumptions and limitations

 Usual initial goal: make the simulator as generic as 
possible

 Then comes the optimization time: adding 
assumptions and limitations

 It is essential to track the assumptions and 
limitations
 In case of design changes (both simulator and 

instrument)
 For future developers of the software
 For the users (both of the software and simulated 

exposures)



Lessons learned: interfaces

 An instrument simulator manipulates a lot of data from 
various sources
 Instrument model: optical design, wavefront maps, 

throughput, etc.
 Astrophysical scenes: cubes, images, spectra, etc.

➔ Use an interface control document
 Should evolve with the developments if needed
 Should be discussed with the users

➔ Define a common vocabulary between all people
 Difficulties to get measured data from suppliers in a given 

format, sometimes even in a numerical format



Lessons learned: building 
instrument models

 Garbage in, garbage out principle: the main limitation 
comes from
 the instrument knowledge
 the availability and the quality of the characterization 

data
➔ Participation to the AIV phase proved to be useful
 Building instrument models requires

 A good knowledge of the instrument
 A good knowledge of the simulator
 A good knowledge of the science that will be done

➔ Models should be created with the help of a scientist 
with strong instrumentation background



Lessons learned: 
programming language

 Instrument simulators are CPU and memory intensive
➔ Fined-grain memory control
➔ Multithreaded code

 Both MUSE and NIRSpec instrument simulators were 
fully developed in C++

 HARMONI instrument simulator will be developed
 Mostly in Python
 C/C++ for the computation intensive parts



Conclusion

 The HARMONI is project now in phase B
 The optical design is still changing a lot
 Currently in the early design phase of the 

instrument simulator
 Mostly prototyping things
 Testing new ideas
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