Characterizing Proxima b (and others) with SPHERE+ESPRESSO

François Wildi Christophe Lovis et al. University of Geneva

Astronomy & Astrophysics manuscript no. proxima September 10, 2016

©ESO 2016

Atmospheric characterization of Proxima b by coupling the SPHERE high-contrast imager to the ESPRESSO spectrograph

C. Lovis¹, I. Snellen², D. Mouillet^{3,4}, F. Pepe¹, F. Wildi¹, N. Astudillo-Defru¹, J.-L. Beuzit^{3,4}, X. Bonfils^{3,4}, A. Cheetham¹, U. Conod¹, X. Delfosse^{3,4}, D. Ehrenreich¹, P. Figueira⁵, T. Forveille^{3,4}, J.H.C. Martins^{5,6}, S. Quanz⁷, N.C. Santos^{5,8}, H.-M. Schmid⁷, D. Ségransan¹, and S. Udry¹

- ¹ Observatoire astronomique de l'Université de Genève, 51 ch. des Maillettes, 1290 Versoix, Switzerland
- ² Leiden Observatory, Leiden University, Postbus 9513, 2300 RA Leiden, The Netherlands
- ³ Univ. Grenoble Alpes, IPAG, F-38000 Grenoble, France
- ⁴ CNRS, IPAG, F-38000 Grenoble, France
- ⁵ Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal
- ⁶ European Southern Observatory, Casilla 19001, Santiago, Chile
- ⁷ Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland
- ⁸ Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal

Received xx September 2016 / Accepted

ABSTRACT

Context. The temperate Earth-mass planet Proxima b is the closest exoplanet to Earth and represents what may be our best ever opportunity to search for life outside the Solar System.

Aims. We aim at directly detecting Proxima b and characterizing its atmosphere by snatially resolving the planet and obtaining

Known exoplanets in reflected light

Realistic SPHERE simulations in the visible assuming an optimized beamsplitter and coronagraph

Fiber coupling efficiency for the planet: ~38% / Stellar light rejection factor: ~500, with a fiber of 14 mas (optimum)

Transmission budget

Item	Throughput	
Atmosphere	0.97	
Telescope	0.65	
SPHERE CPI	0.50	
Coronagraph	0.70	
Fiber Coupling	0.60	
Fiber Link	0.80	
Spectrograph	0.40	
Total	0.042	

Transmission II

Assuming a star – planet contrast of 10⁻⁷, the the average flux from Proxima b is 0.3e-/pix per 8-hour operation

Seems over-the-top, but today, with HARPS we already observe CCF's where the Moon contamination at sub e- level is clrearly seen with R.O. noise of 12 e-

Detecting the planet reflected spectrum with ESPRESSO (R=220,000) and cross-correlation techniques

Detecting the planet reflected spectrum with ESPRESSO (R=220,000) and cross-correlation techniques

Observing Proxima b

- Giving the angular separation, orbital period, position on the sky and observation time required, Proxima b is observable efficiently in about 34 nights per year.
- Therefore it is observable in one year
- Observing will fully determine the orbit
- Will give insight in fundamental properties, but albedo, radius, phase function are entangled

Search for O₂ absorption in the albedo spectrum

Given SPHERE+ and an Earth-like atmosphere, a 3.6-sigma detection is possible in about 60 nights with the VLT. K=5000

Implementation

ESPRESSO

220'000 resolution @0.5 arcsec FOV

Requirement	Standard 1-UT	4-UT	Very-High Res 1-UT
Wavelength Range	380-686 nm	380-686 nm	380-686 nm
Resolving Power	120.000	30.000	220.000
Aperture on Sky	1.0 arcsec	4x1.0 arcsec	0.5 arcsec
Sampling (average)	3.3 pixels	4.0 pixels (binned x2)	2.1 pixels
Spatial Sampling	6.9 pixels	4.0 pixels (binned x2)	3.5 pixels
Simultaneous reference	Yes (no sky)	Yes (no sky)	Yes (no sky)
Sky subtraction	Yes (no sim. ref.)	Yes (no sim. ref.)	Yes (no sim. ref.)
Total Efficiency	>10% at peak	>10% at peak	> 7% at peak
Instrumental RV precision (requirement)	<10 cm/sec	<=5 m/sec	<=5 m/sec

