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ERIS capabilities

AO modes

i) NGS AO

i) LGS AO

iii) seeing enhancer (LGS AO without tip-tilt)
iv) seeing limited

Observing modes
1. SPIFFI

2. NIX

3. NIX

4. NIX

Integral field spectroscopy
FoV 0.8”, 3.2”, 8”; R~3000 & 8000; J-K bands

Imaging
J-K narrow/broad bands; 13/27 mas pix (26”/55” FoV)
L-M broad bands; 13 mas pix (26” FoV)

High contrast imaging Pupil plane coronagraph (L-M)
Focal plan coronagraph (L-M)
Sparse aperture Masking (J-M)

long slit spectroscopy R=500, L & M band




ERIS design drivers

e Schedule is critical
e Start of Science Operations in 2020, with 10-15year lifetime
e Complementary to JWST; some aspects will surpass JWST
e ERIS will bridge gap to start of E-ELT science operations (2025+)

e Achieving first light in 2020 requires
e Familiar technology
e Simple design

 Design choices
* Avoid optical relay -> longer back focal distance from VLT
e SCAO: LGS & optical NGS sensors (no IR tip/tilt sensor)



Adaptive Optics Performance

e Strehl ratios significantly better, and achievable to fainter magnitudes,
than possible with NACO or SINFONI.
* Major potential at shorter wavelengths.

 Longer wavelengths & fainter magnitudes complementary to SPHERE.
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Science Themes

e As a facility workhorse instrument, ERIS will address many science themes.

* Those highlighted by the Science Team include:

1. High Redshift Galaxy Evolution (N. Forster Schreiber)
JHK Integral Field Spectroscopy

2. Direct Imaging of Exoplanets (S. Quanz & M. Kenworthy)
Coronography, Sparse Aperture Masking, LM Spectroscopy

3. Galactic Center (S. Gillessen)

Astrometric Imaging & HK Integral Field Spectroscopy



Galaxy Evolution at High Redshift

Signatures of physical processes driving mass assembly & structural transformations
are on scales < 1 kpc and a few 10s of km/s:
e Growth of bulges & disks

e Inflows in disks

e Imprint of clumps & (minor) mergers in kinematics

e Star formation (in clumps vs interclump)

* Feedback & quenching (outflows from star formation & AGN)

IFUs are the most efficient way to fully map galaxies.

e Spatial & spectral resolution are needed not only to resolve
structural/kinematic components, but to resolve them from each other.
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AQ samples of high redshift galaxies

e Still very limited —about 120 galaxies at z~ 1 — 3.5, a majority from SINFONI
* Most target galaxies at z ~ 2 — where AO performs best & instruments are sensitive

e Covers a mixed bag of bright and/or high-sSFR and/or strongly lensed objects
(except for a few efforts such as SINS/zC-SINF)

“census” instruments like KMOS yield 1000s with seeing limited data
(>500 from each of KMOS3P and KROSS) e
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Galaxy Evolution: ERIS and JWST

* No current/planned space-based instrumentation will provide the necessary

spectral resolution for kinematic studies of galaxies

JWST:

ERIS:

single IFU with R<3000
MOS for surveys of faint galaxies, multi-line diagnostics
-> detailed census of galaxy populations at high redshift

AO performance & sensitivity in JHK bands, new R~8000 grating
-> physical mechanisms of galaxy evolution & star formation shutdown
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Detecting planets with high contrast L band imaging

e Detection of cold (old or lower mass) planets more common in L band.

 Also young planets in circumstellar disks: warm circumplanetary material & high
extinction mean L/M band highly competitive. These proto planets have not
been seen at shorter wavelengths.
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Kraus & Ireland 2012; Quanz et al. 2013,2015; Reggiani et al. 2014;
Biller et al. 2014; Currie et al. 2014



L and M band: unique probe of gas giant planet atmospheres

ERIS follow-up of SPHERE/GPI NIR detections
e investigating clouds and non-equilibrium chemistry
e Combining SPHERE (JHK) & ERIS (LM) data vastly enhances scientific analysis
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Exoplanets: ERIS and JWST

4 Contrast Sensitivity )
VS
Speckle noise Background noise
\_ ERIS is superior at radii <1” JWST is superior for faint primaries )
Coronagraph:
e NIRCam (JWST) will reach HWHM = 0.82”

~10mag at 0.5” 6A/D @ 4.3pum

e NACO & LMIRCam (LBT)
already achieve 12mag

e ERIS will do better
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The Galactic Center - a unique laboratory

RéVieW: Genzel, Eisenhauer & Gillessen, 2010 -
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The Galactic Center showcase star: S2

VLT & Keck data suitably combined

(Gillessen et al. 2009ab, Ghez et al. 2008,
as well as newer data)

e period: 15.9 years
e semi major axis: 125 mas
e eccentricity 0.88

e M=4.30%0.06+0.35x10° M
* R, =8.28+0.15+0.30 kpc

2015.00



Precession Is detectable with AO on VLT
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A gas cloud on its way to Sgr A*

e Tidal disruption unfolding in front of SINFONI
e Evolution (traced back to 2006) qualitatively well described by test particles
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Summary of key points

e ERIS will replace & enhance NACO & SINFONI as a fundamental AO capability
from 2020 to beyond 2030.

* Broad science potential, both complementary to & competitive with JWST

e Science themes include
e Galaxy evolution at high redshift
* Exoplanets (protoplanets, atmospheres, etc)
* Astrometry in the Galactic Center



