Experience from long baseline observations

Anita Richards (with thanks to ARC colleagues, Ed Fomalont, Robert Laing

- Prequel: VLBI data in CASA
- Cycle 3 long baseline phases
 - How well does the present system do in reality?
- What diagnostics, requirements?
 - Making use of what we've got
- Oxygen sounder

Prequel: EVN data in CASA

- Development in Africa with Radio Astronomy
 - Skills exchange for African VLBI Network (with SKA)
 - cm-wave focus, summer schools, want to teach in CASA
- Write EVN CASA script (much help from Mark Kettenis)
 - Well-behaved 5 GHz data
 - Target/phase-refs, BP cal
 - Max baseline ~12000 km

- ~200 M λ = 200 km at λ 1mm
 - LLAMA-like but better atmosphere
- No need for 'rate' calibration http://jbcamail.jb.man.ac.uk/DARA_ Newton ro/EVN Continuum

CASA EVN Script

- Metadata issues converting EVN fitsIDI data format to MS
 - Antenna diameters, axis offsets have to be added
 - FITS non-standard? (OK in e-MERLIN data)
 - Tsys (incl. flux scale), gain-el tables via MK scripts
 - Glitch in interpolating across scans missing an antenna
- Otherwise normal CASA data reduction including delay
 - Need to apply parallactic angle correction for correct astrometry even for total intensity at >~1 M λ
 - Should we be doing this for ALMA at >1 km baselines?
 - Many calibrators are resolved
 - Develop model iteratively if necessary

The result.... 3C345

Phase-referenced, self-calibrated

MOJAVE VLBA image of 3C345 at 15 GHz (different angle due to jet precession)

Cycle 3 long baseline science data

- Band 7, continuum+line, up to 16-km baselines
 - Phase-ref ~0.4 Jy, 2.8° separation
 - ~2-3 min phase-ref : target cycles, 18:90 sec on-source
 - In 3 min (time), Earth rotation means a change in direction of atmospheric path of 1°.5 @ el 60°
 - 5 m/s wind 6 km above telescope will cross ~9° in 3 min
 - PWV 0.41 mm, stable
- Cycle 3 observations & data reduction techniques noticably smoother than 2014 – 15 LBC/SV!

APEX monitoring on date of science obs

Science project 'QA2' flow

10:33:20

10:35:00

10:36:40

100

50

0

-50

-100

-150

10:25:00

10:26:40

10:28:20

10:30:00

10:31:40

Time (from 2015/11/05) (hh:mm:ss)

Phase:corrected (degrees)

WVR short baselines

- Slight reduction in scatter
 - Pretty good anyway!

Time

PWV ~0.6, Band 9 raw 0.25 - 2.5 km baselines

Bandpass of calibrated phase ref

equency (GH

- Fully-calibrated phase-ref phase & amp good on all baselines
- Not too bad even in 122-kHz FDM channels, longest b'lines

Phase v. time cal tables

- $\phi \sim 45 \text{ deg in 2 min typical}$
- M=66 scans, N= 44 ants (assuming errors per scan independent)
- Transfer of correction to target dynamic range limition ~ \sqrt{M} N/ϕ ~455

Pre- and post-phase-corrected phs ref No time averaging, TDM spw

Corrected phase-ref 2 v. 0.25 GHz

Longest baselines, 18-s avg

Phase-ref ~400 mJy, phase OK in 250 MHz spw

~140 mJy in 2 GHz or 70 mJy in 4 GHz, average pol.

• Need to test full averaging in phase referencing

Phase-ref v. checksource, corrected

- Checksource: 4.3° from phase-ref
- After applying phase-ref corrections:
 - Check-source offset from catalogue position 4.5 mas
 - Flux density in image only 43% of expected (145 mJy)

Target imaging

theoretical 22 µJy

Target phases selfcal TDM spw

- Initial per-scan phase solution improves S/N 500%
 - 30s phase solutions
 - per-scan amp & phase
 - another 40% improvement
 - Longest baselines still noisy
 - Flux-limited/complex structure?
 - Calibration-limited?

Weak calibrator survey example

- TDM, all chans averaged
 - 20/40 s per scan B3/7
 - on-line WVR
- Observe phase-ref, targets within 15°
 - These, VLBI astrometry

APEX monitoring – weak cals

Weak cals

- Phase-ref itself observed as target
- Apply phs-ref solutions
- Divergence \propto time gap
 - Not baseline length?

Phase transfer

- 2 bright targets ~10° from phase-ref
- Bad phase offsets
 - indep. of refant, baseline length
 - Not ant. pos errors

Some systematics?

- Some phase offset directions depend on antenna
 - Outlying antennas e.g. DA43 see different dry component?
 - CSV-3146
- Systematic secmin scale phase drifts
 - Not WV
- Directiondependent or location dependent?

Atmosphere

- ALMA above much H_2O
 - Measures Vapour
 - Not clouds!
 - Empirical correction

Ê

- O₂ ubiquitous, O₃ higher
- Other species?
- Weather stations:
 - Pressure
 - Ground-level temp.
 - Wind speed etc.

Column density as function of altitude

Oxygen sounder

- Commissioned by Cavendish labs
 - Nikolic, Curtis
- Taking data at ALMA, not yet used
 - WV results agree with WVR

- Dent (JAO), Bendo (Manc.) et al. exploring implementation
- Measures:
 - Cloud cover
 - Temperature profile
 - Variations in oxygen content
 - Model the elusive Dry Component!

Summary

- Long (10-16 km) baselines work very well
 - Residual errors no worse than on few-km in good conditions
- WVR 1-sec corrections good *if PWV is the problem*
- Few-min scale phase-referencing corrections OK *but*
 - can have $\pi/4$, apparently unrelated, drifts per minute
 - Limits dynamic range to few hundred
 - 30-sec self-cal reduces noise rms to \sim 1.5 x expected
- 3 min phase-ref:target cycling $\approx 1.5^{\circ}$ separation on sky @ el 60°
 - 5 km/s wind, 5.5 km above ALMA, crosses 9°
- Few sec min residual phase drifts tens deg
 - Dry component?
 - Imprecision in using WVR?

Kolmogorov turbulence

Kolmogorov prediction (Coulman'90) $\varphi_{rms} = \frac{K}{\lambda} B^{\alpha}$ where K~100 at ALMA for λ in mm and α depends on the length of baseline B compared with W, the thickness of the turbulent layer

- Baseline 2-3 < *W*
 - Phase noise $\phi_{\rm rms}$ increases as $B^{5/6}$
- Baselines 1-2, 1-3 > W but < OS: $\phi_{\rm rms} \propto B^{1/3}$
- Baselines 4-* in outer scale regime: ϕ_{rms} levels off

Obs. models/offline data reduction

- Fix/create offline data reduction CASA tasks
 - Fitting rate as well as delay (fring) MK/GM progress!
 - Fit spline for phase connection gspline broken
 - Fix other interpolation/extrapolation restrictions
 - More use of existing capability e.g. parallactic angle corr., MFS ...
- Techniques (happy to expand on!):
 - Bandwidth switching optimise estimates of phase offsets
 - Better use of WVR (if justified)
 - Heuristics/real basis for when to self-cal
 - All have CASA/pipeline/QA2 implications
- Expand/correct documentation including underlying princples!

Conclusions: short-scale ϕ corrections (tentative, small sample!)

- WVR: better to apply before data averaging to 3 or 6 sec integrations? or to smooth offline/apply to averaged?
 - More use of data:
 - Per-antenna coefficients?
 - Update atm model, fine-grained if dispersive e.g. 183 GHz
- Oxygen sounder(s) implementation (software mostly)
 - Dry component, clouds...
- Fast switching needs v. close calibrators
 - ~70 mJy OK per 2-4 GHz at B7 any baseline (low PWV)
 - Wind speed main timescale factor in good conditions?
 - Weak/high v cal survey resources (data reduction, archiving.)

Phase errors and dynamic range

- Image is formed by Fourier transform
 - $I(x) = \int V(u) e^{i2\pi ux} du$
 - Each baseline contributes at position u_k and complex conjugate $-u_k$ in the visibility plane
- Evaluating the term in the integral for each of the [N(N-1)/2]-1 good baselines gives $2\cos(2\pi u_k x)$
- Bad baseline gives $2\cos(2\pi u_0 x \phi)$
 - ~ $2[\cos(2\pi u_0 x) + \phi \sin(2\pi u_0 x)]$ for small ϕ (in radians)
- The image integral thus sums to $I(x) = 2\varphi \sin(2\pi u_0 x) + 2\sum_{k=1}^{N(N-1)/2} \cos(2\pi u_0 x)$

Phase errors and dynamic range

• The synthesised beam is given by

$$B(x) = 2 \sum_{k=1}^{N(N-1)/2} \cos(2\pi u_0 x) = N(N-1) \text{ for } u = 0$$

 Deconvolution is the subtraction of the beam from the image leaving the residual error

$$R(x) = \left[2\varphi \sin(2\pi u_0 x) + 2\sum_{k=1}^{N(N-1)/2} \cos(2\pi u_0 x) \right] - 2\sum_{k=1}^{N(N-1)/2} \cos(2\pi u_0 x)$$

= $2\varphi \sin(2\pi u_0 x)$

- an 'odd' sinusoidal function of amplitude 2ϕ , period $1/u_0$
- To maintain the flux scale, integrals are normalised: $\frac{R(x)}{N(N-1)} = \frac{AI(x)}{N(N-1)} - \frac{B(x)}{N(N-1)}$ Here, 'true' amplitude A = 1

Calibration errors and dynamic range

• The rms of the residual $R(x) = \frac{2\varphi \sin(2\pi u_0 x)}{N(N-1)}$

over the whole map is $\sqrt{2} \phi / N(N-1)$

- For small phase error φ, large N, the ratio of the peak / noise residual is thus
 - Dynamic range $D_{\rm B}(\phi) \sim I(x) / R(x) \sim N^2 / \sqrt{2} \phi$
 - e.g., radians (5°)~0.09
- Amplitude error ϵ on a single baseline has the effect

 $V(u) = (1+\varepsilon)\delta(u - u_0) e^{-i\phi}$ leading (via a cos function) to

- Dynamic range $D_{\rm B}(\varepsilon) \sim N^2 / \sqrt{2} \varepsilon$

- A phase error of 5° is as bad as a 10% amp error
- Phase errors are sin (odd), amp are cos (even)

Calibration errors and dynamic range

- So far considered one-baseline error, one integration
- All baselines to one antenna affected by same error:
 - (N-1) bad baselines (~N for large N)

- $D_{ant} = D_B / (N-1) = [N^2 / (N-1)] / \sqrt{2} \phi \sim N / \sqrt{2} \phi$

• If all baselines are affected by random noise,

- $\boldsymbol{D_{all}} = D_B / \sqrt{[N(N-1)/2]} = \sqrt{[N(N-1)/2]} \phi \sim N/\phi$

- If errors are correlated in time, e.g. single phase-ref scan, ~constant u, these expressions hold.
- For M periods (scans?) between which noise is uncorrelated

- $D_{\text{all}} \sim \sqrt{M} N/\phi$

Calibration for good dynamic range

- Implications so far: take a 10-antenna array
 - Twelve independent scans on a target, phase reference and other calibration applied, well edited
 - Residual phase scatter 20° : $D_{all} \sim \sqrt{M} N/\phi$
 - \sim 100 dynamic range limit
 - Can you improve by self-calibration?
 - No if you have reached the $T_{\rm sys}$ limit
 - No, if remaining errors are pure noise. If not:
 - Maybe, if some antennas are still imperfectly calibrated
 - Calibrate per antenna, per scan (or longer)
 - Need potential S/N per interval high enough to get $\phi < 20^\circ$

Phase-referencing dynamic range

• Most correctable errors are per-antenna

$$\sigma_{ant}(\delta t, \delta v) \approx \sigma_{array} \sqrt{\frac{N(N-1)/2}{N-3}} \sqrt{N_{spw}N_{pol}}$$

- Sensitivity calculators generally give σ per total b/w
 - + 8 spw, 2 polarizations, 1 min, 10-ant EVN σ_{array} 0.15 mJy
 - from www.evlbi.org/cgi-bin/EVNcalc.pl
 - + σ_{ant} ~1.5mJy for 1 min
- Use $D_{\mathrm{ant}} \sim N$ / $\sqrt{2}\phi$, say want 5° phase accuracy
- $S_{\text{phsref}} / \sigma_{ant} = D_{\text{ant}} \sim N / \sqrt{2}\phi$
 - Need phase-ref flux density $S_{\text{phsref}} > 120 \text{ mJy}$
 - In practice, need more to allow for bandpass etc. errors
 - This is assuming solutions per 1-min scan