RAL Space

ALMA Band 2+3 LO and down-convert Mixer development at STFC

Hui Wang, Emma-May Butroid and Brian Ellison

RAL Space

STFC-Rutherford Appleton Laboratory, UK

23rd -24th May 2016, Gothenburg, Sweden

Objectives

- Design and construction of the necessary LO chain
- Development of suitable down conversion mixers
- Development of appropriate electronic interfaces and software control
- Integration of the system into a pre-prototype form
- Use of the system to support cryogenic LNAs performance testing

Band 2+3 Receiver Concept

Local Oscillator Chain

4

Local Oscillator Chain

LO Control Interface

- An objective encoded software application has been developed to provide a user interface to the downconvertor
- VCO frequency is set by the user and transferred to the VCO via a USB and digital interface circuit
- Maximum range of VCO: 13-17.5GHz
- A x3 multiplier produces a LO tuning range of 39-52.5GHz

Local Oscillator Power Level

Sub-Harmonic Image-Rejection Mixer (SHIRM) Development

- Frequency range
 - RF: 67-116 GHz
 - ► IF: 4-12 GHz (Goal); 4-8 GHz (current ALMA)
 - LO: 39.5-52 GHz
- Package
 - RF: WR10 waveguide
 - LO: WR19 waveguide
 - Integrated RF, LO and IF hybrids with two DSB mixers into a single housing

Sub-Harmonic Image-Rejection Mixer (SHIRM) Development

- Two possible phasing topologies when employing subharmonic mixers
 - ▶ ΦRF=0°, ΦLO=45°

▶ ΦRF=90°, ΦLO=90°

Devices employ planar Schottky diode technology from RAL Space

Image Rejection Mixer Architecture

DSB subharmonic mixer with predicted performance

LO@46GHz, P_LO=3mW, IF: -15 to 15GHz

ALMA Band 2/2+3 Workshop - 23rd to 24th May 2016

RF Hybrid

SHIRM 3D Drawing

Three layers – single house including RF, LO and IF hybrids

SHIRM 3D Drawing

► Top layer contains IF hybrid

Predicted Mixer NT of 1000K and CL of 8dB

Previous SHIRM at 340GHz

- SHIRM Optimised performance
 - Sideband rejection: 15 dB min. (>20 dB nom.)
 - SSB receiver noise temperature: ~3000 K
- Devices employ planar Schottky diode technology from RAL Space

LNA test setup for Band 2+3

Summary

- ► LO chain has been implemented into a pre-prototype form
- Appropriate electronic interfaces and software control developed
- SHIRM to be tested and integrated into the system to support LNAs measurement

Acknowledgements

The research described has received funding from the STFC Project Research and Development scheme, and the European Southern Observatory 2010 upgrade fund.