
NA Development Cycle 2 ALMA Band 2 Prototype Project Kamaljeet S Saini

ALMA Band 2 Prototype Project Team Members / Contributors

- Low Noise Amplifiers:
 - Marian Pospieszalski (MIC)
 - Kieran Cleary & Team at CRAL (MMIC)
 - Matthew Morgan
- <u>Optics:</u>
 - Sri Srikanth
 - Alvaro Gonzalez
- Down Converter:
 - Dustin Vaselaar
 - Jim Muehlberg
 - Matthew Morgan
 - Kamaljeet Saini
- Local Oscillator:
 - Dustin Vaselaar
 - Jim Muehlberg
 - Kamaljeet Saini

- Cold Cartridge:
 - Kirk Crady
 - Greg Morris
 - Arthur Symmes
- <u>Shop & Chemistry Lab:</u>
 - Greg Morris
 - Gerry Petencin
- Evaluation / Metrology:
 - John Effland
 - Morgan McLeod
 - Kirk Crady
 - John Buchanan
 - Kamaljeet Saini
- Consultancy & Support:
 - Matthew Morgan
 - SK Pan
 - Robert Dickman

ALMA Band 2 Prototype Project

Goals

Hardware Deliverable(s):

- 1. 35 nm InP HEMT MMIC wafer(s) with optimized Band-2 designs.
- 2. Four prototype single-pol. MMIC amplifier modules.
- 3. Four prototype single-pol. MIC amplifier modules.
- 4. Sufficient probe-tested MMIC chips for 150 modules.
- 5. Optics design (including drawings and analysis).
- 6. Optics components (horn, mirrors, etc.)
- 7. Auxiliary components (bias modules, cables, etc.) for prototype cartridge.
- 8. Prototype integrated cold cartridge.
- 9. Prototype Warm Cartridge Assembly (including down-converter and LO).
- 10. Band-2 cartridge test system (implemented around the ALMA cryostat).

Software Deliverable(s):

- I. Cartridge M&C software, modified for Band-2.
- 2. Cartridge test software, modified for Band-2.

Deliverable Documentation:

- I. "PDR Ready" design report.
- 2. Cartridge test data report.
- 3. Specifications and ICDs.
- 4. Preliminary costing for full production run.
- 5. Monthly "4-square" Progress, Final, and

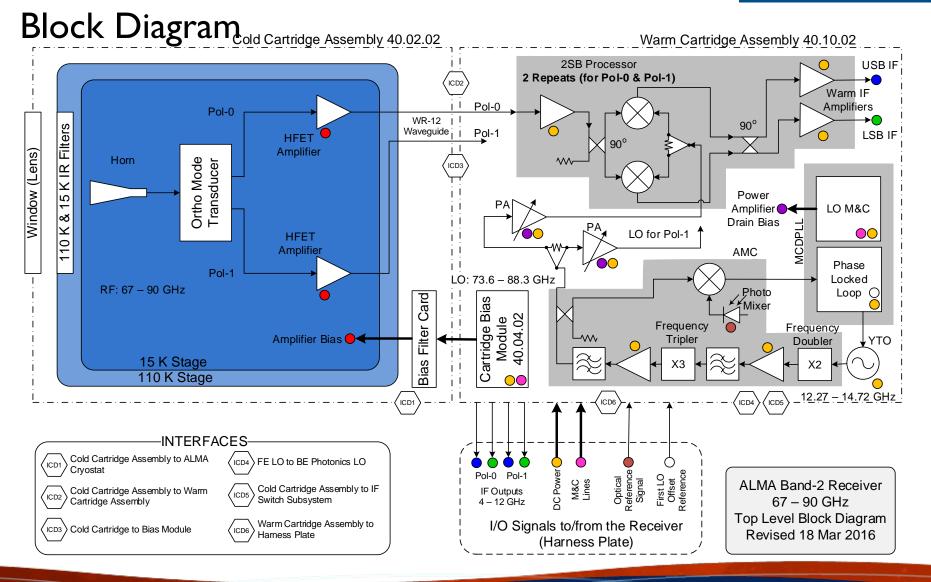
Outcome Reports.

ALMA Band 2 Prototype Project Project Summary - I

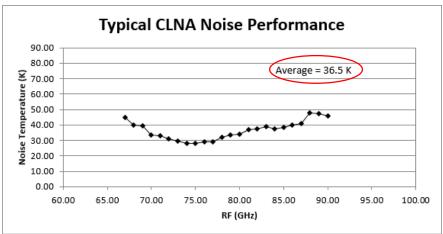
- The first ALMA Band 2 receiver (cold cartridge, local oscillator, as well as IF down converter) has been constructed.
- Even at the outset, the two year development project timeline was very tight to develop (design, fabricate and construct) MMIC based LNAs and then construct the receiver in a serial fashion.
- Consequently, we have constructed the receiver prototype around NRAO/CDL MIC (chip and wire) E-band LNAs in parallel with the CRAL MMIC effort. Receiver will be upgraded with MMIC LNAs when they are delivered.
- This presentation provides an overview of important cartridge component performances, cartridge (cold and warm) construction and alignment details, and significant receiver performance metrics (but not comprehensive compliance data, which has been taken and incorporated into the design report).

ALMA Band 2 Prototype Project Project Summary - II

- Band 2 67-90 GHz
- Test results indicate that even the state-of-the-art E-band LNAs barely meet the overall ALMA Band 2 noise specification by themselves. Allowing for additional noise degradation from the optics, it will be difficult to meet the existing ALMA noise specification. Seeking a review of the ALMA Band 2 receive noise specification seems to be in order.
- The optics specifications are generally met with the exception that there are dips in polarization efficiency at specific frequencies that fall below the 99.5% specification value. These are attributed (both by measurements as well as by simulations) to an interaction of the 15 K IR filters with the horn aperture an effect also seen on some other ALMA bands. (More on this later).


5

ALMA Band 2 Receiver Prototype


sociated

Universities Inv

ALMA Band 2 Receiver Prototype System Noise Temperature Estimation

Band 2 Receiver stage	Gain	Cumulative Gain to preceding stage	Noise Figure	Noise Temperature	T _{equivalent}
Lens/Window (room temperature)	-0.1 dB	0.0 dB	0.1 dB	8.9 K	8.9 K
IR Filters (15 K and 80 K)	-0.1 dB	-0.1 dB	0.1 dB	1.4 K	1.5 K
Feedhorn (15 K)	-0.1 dB	-0.3 dB	0.1 dB	0.3 K	0.4 K
OMT	-0.1 dB	-0.4 dB	0.1 dB	0.3 K	0.4 K
Q-Band Amplifier (15 K)	35.0 dB	-0.5 dB		36.5 K	40.6 K
Waveguides, feed-thru and BPF	-4.0 dB	34.5 dB	4.0 dB	453.6 K	0.2 K
Q-Band Amplifier (room temperature)	14.0 dB	30.5 dB	3.5 dB	371.6 K	0.3 K
2 SB Downconverter	-12.0 dB	44.5 dB	12.0 dB	4454.7 K	0.2 K
Warm IF Amplifier	30.0 dB	32.5 dB	2.0 dB	175.5 K	0.1 K
Total	62.5 dB				52.4 K

ALMA Band 2/2+3 Workshop (May 23rd-24th, 2016)

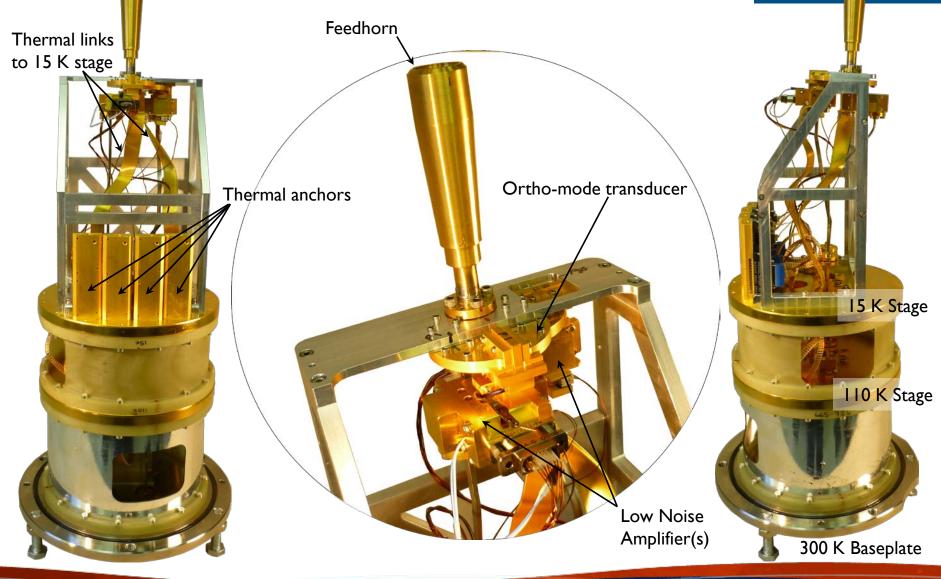
sociated

Universities Inc

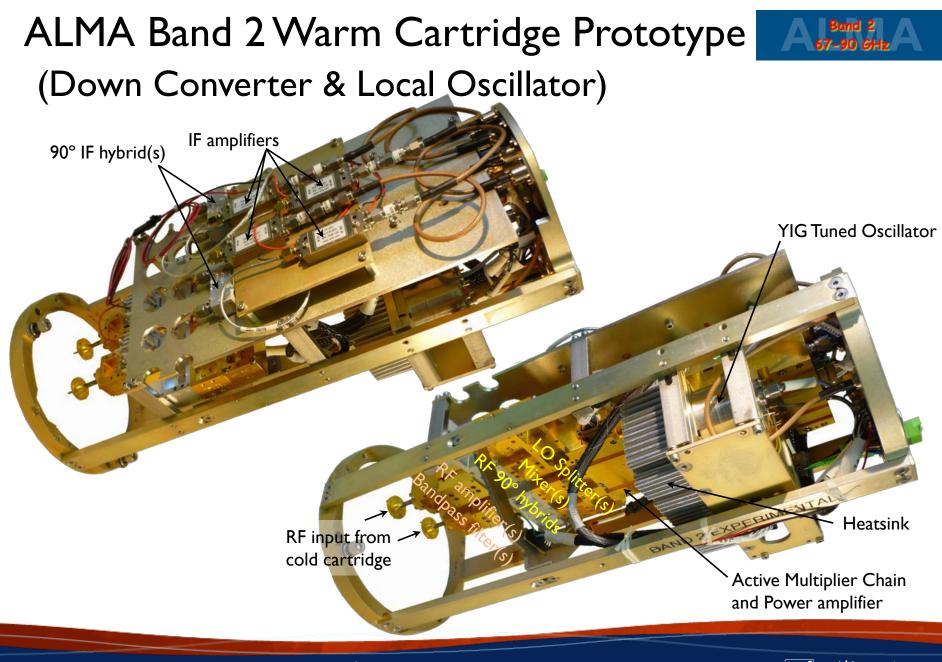
ALMA Band 2 Receiver Prototype Thermal Budget(s)

Band 2 67-90 GHz

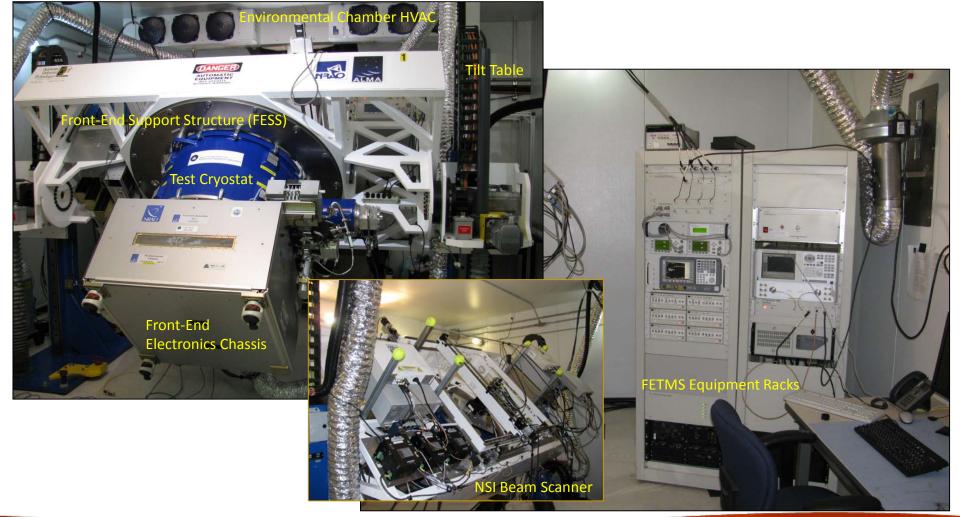
From ALMA Front End Thermal Budget, FEND-40.00.00.00-050-B-GEN:


15 K Stage	Bands	Band 3	Bands	Band 6	Band 7	Sum
	I - 2		4 - 5, 8 - 10			
Passive heat load	95 mW	95 mW	95 mW	75 mW	II5 m₩	950 mW
Active heat load	90 mW	20 mW	67 mW	67 mW	15 mW	200 mW
Total heat load	185 mW	115 mW	162 mW	162 mW	130 mW	1150 m₩

IIO K Stage	Bands I - 2	Band 3	Bands 4 - 8	Bands 9 - 10	Sum
Passive heat load	450 mW	350 mW	700 mW	600 mW	5950 mW
Active heat load	150 mW	50 mW	150 mW	250 mW	550 mW
Total heat load	600 mW	400 mW	850 mW	850 mW	6500 mW


- Requirements met comfortably for 15 K stage, CLNAs dissipate 15-30 mW each (article to article variation, depends on optimization).
- No active component on the 110 K stage.

ALMA Band 2 Cold Cartridge Prototype



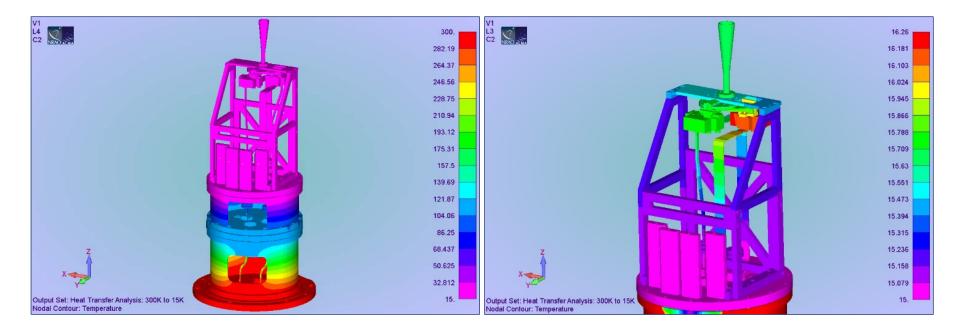
ALMA Band 2 Receiver Prototype Evaluation in the ALMA Cryostat

ALMA Band 2/2+3 Workshop (May 23rd-24th, 2016)

sociated

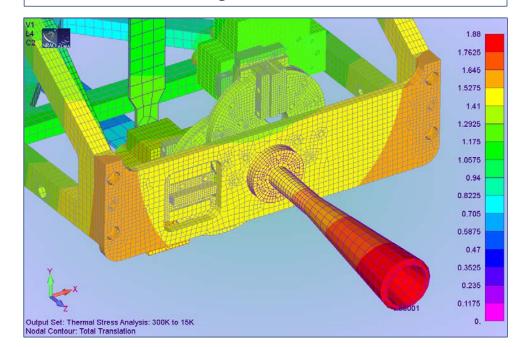
ALMA Band 2 Cold Cartridge Prototype Mechanical Analysis

A mechanical design analysis was performed by employing the Finite Element Analysis (FEA) technique using the NX NASTRAN version (with FEmap) provided by Siemens.

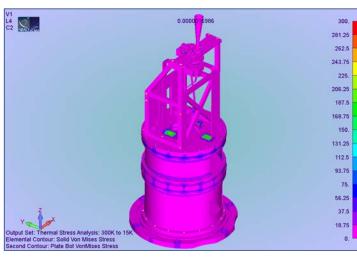

Band 2 Cold Cartridge Assembly FEA Model showing mesh density

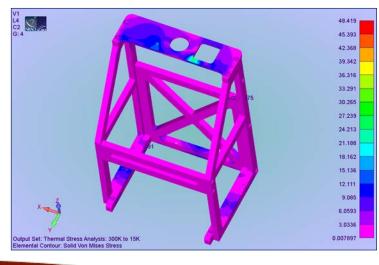
ALMA Band 2 Cold Cartridge Prototype Mechanical / Thermal Analysis

Temperature distributions, stresses, & deflections (both gravity and temperature induced), and vibrational modes and frequencies calculated.


ALMA Band 2 Cold Cartridge Prototype Mechanical / Thermal Analysis

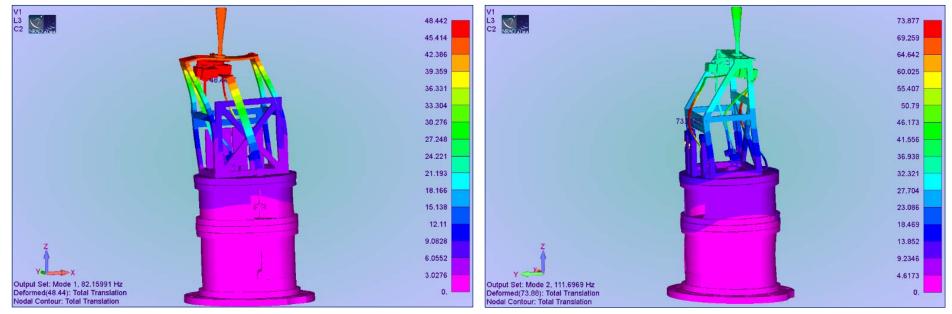
Deformation Component	Deformation (mm)
X-Direction	-0.00036
Y-Direction	-0.081
Z-Direction	-1.857


Displacement of the feed horn aperture center point due to cooling.


Gravity induced displacements found to be significantly lower than the thermal induced deformations. Resultant displacement (total due to x-, y- , and z- direction displacements) at and near the feed horn due to cooling.

ALMA Band 2 Cold Cartridge Prototype Mechanical / Thermal Analysis

Band 2 Structural Co	mponent	Material	Peak Stress (MPa)	Factor of Safety (on Yield Stress)
300K Base Plate		6061 AL	48.2	5.73
300K-110K Spacer Tu	ıbe	G10	100.9	2.39
110K Plate		6061 AL	127.2	2.17
110K-15K Spacer Tul	be	G10	154.7	1.56
15K Plate		6061 AL	169.9	1.62
OMT Support Struct	ure	6061 AL	48.4	5.70


The equivalent static stresses associated with the thermal loading boundary conditions are summarized in the table above. In general, all stress conditions during cool-down are provided with sufficient material factors of safety.

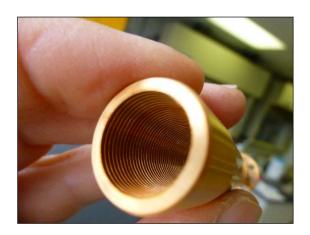
Gravity loading stresses are significantly lower than the equivalent thermal stresses; as a result we should expect that the Band 2 cold cartridge assembly should adequately handle shipping loads.

ALMA Band 2 Cold Cartridge Prototype

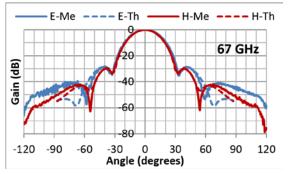
- Vibration Mode Shapes: 1st Mode 82.2 Hz, 2nd Mode 111.7 Hz,... First ten modes calculated. 1st mode is compliant with respect to the > 70 Hz requirement.
- Analysis pointed to a modification that would use two extra fasteners (screws) to increase the stiffness of the OMT support structure. This would raise the resonant frequency for the first mode to 99 Hz. This change has not been implemented in the prototype cartridge but can be implemented in the pre-production/production versions of the Band 2 cold cartridge assembly.

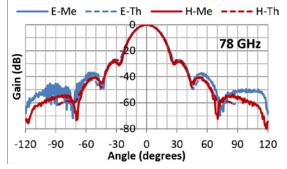
ALMA Band 2 Cold Cartridge Prototype Optics Design

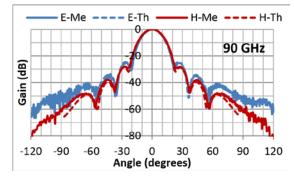
- Frequency independent illumination taper of -12 dB requires a 106 mm diameter, 785 mm long horn. Will result in beam truncation due to limited cryostat aperture. Similar truncation constraints apply to cooled lens.
- Reflective optics has to be placed outside the cartridge/cryostat (due to space constraints). Limited space outside due to calibration device, experimental design increased angle of incidence on the subreflector and yielded poorer polarization performance.
- Moderate beam waist horn with refractive optics (lens, which also serves as the vacuum window) design option was chosen.
- HDPE was selected for the lens material. Alternatives like high dielectric constant Si were studied (to save losses, since the lens would be thinner), but were not selected as the loss was found to be similar to a thicker HDPE lens. (Loss depends on electrical thickness, not the physical thickness).

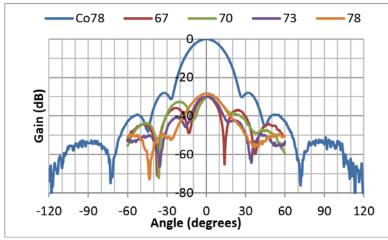


ALMA Band 2 Cold Cartridge Prototype Feed Horn

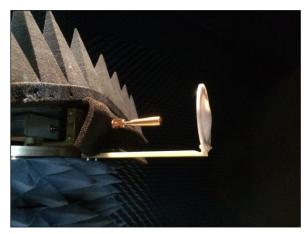


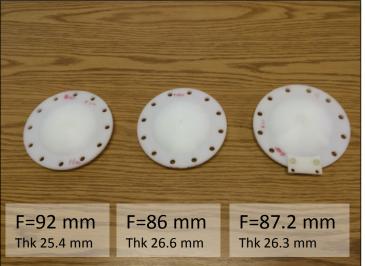


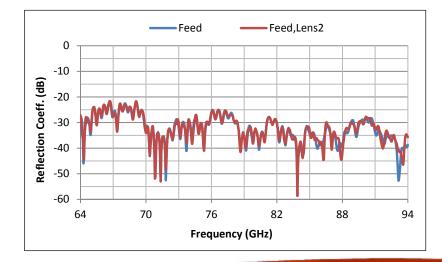



ALMA Band 2 Cold Cartridge Prototype Feed Horn

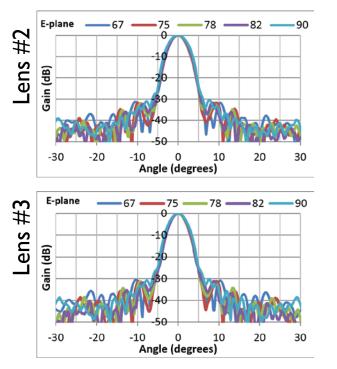
Frequency	Taper in dB at 20° (Calculated)		Beam waist	Phase center
(GHz)	E-plane	H-plane	(Calculated) (mm)	(Calculated) (mm)
67	-9.07	-10.52	4.73	2.7
78	-14.40	-15.72	4.71	3.8
90	-23.44	-22.18	4.67	5.0

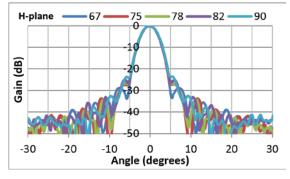


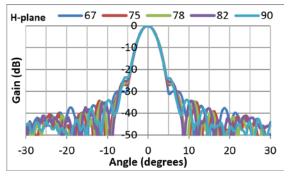


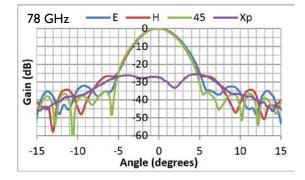


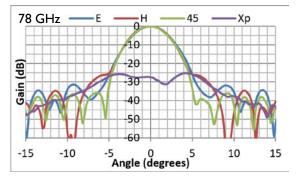
ALMA Band 2 Cold Cartridge Prototype Horn & Lens

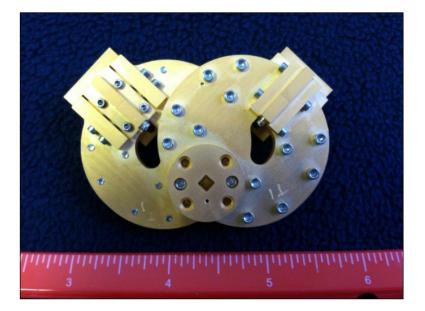


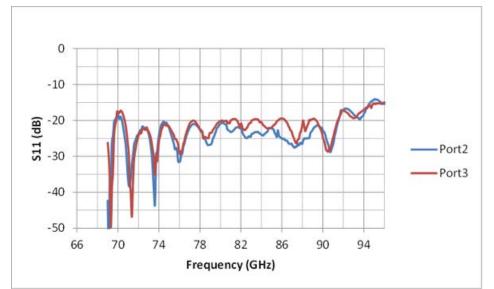




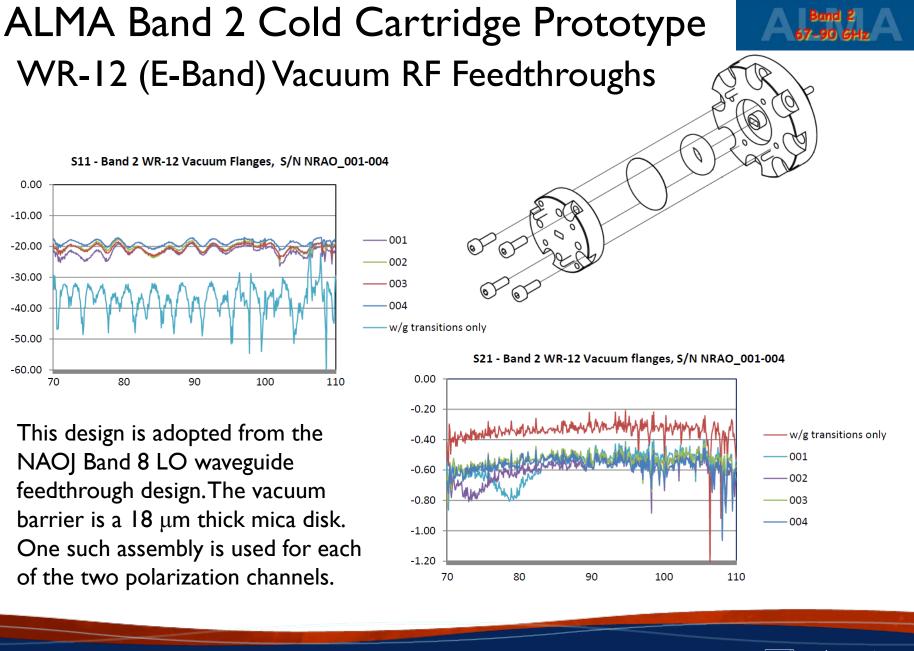

sociated Universities in


ALMA Band 2 Cold Cartridge Prototype Horn & Lens

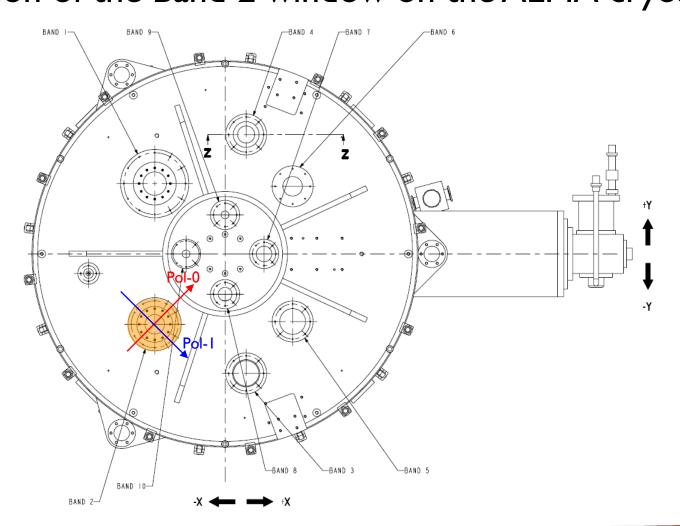

Lens #	Illumination taper at 3.6° (dB)						
	67 GHz	78 GHz	90 GHz				
2	-13.44	-12.80	-11.33				
3	-14.37	-14.03	-12.60				
4 (Fresnel, 1-zone)	-10.88	-11.56	-11.36				

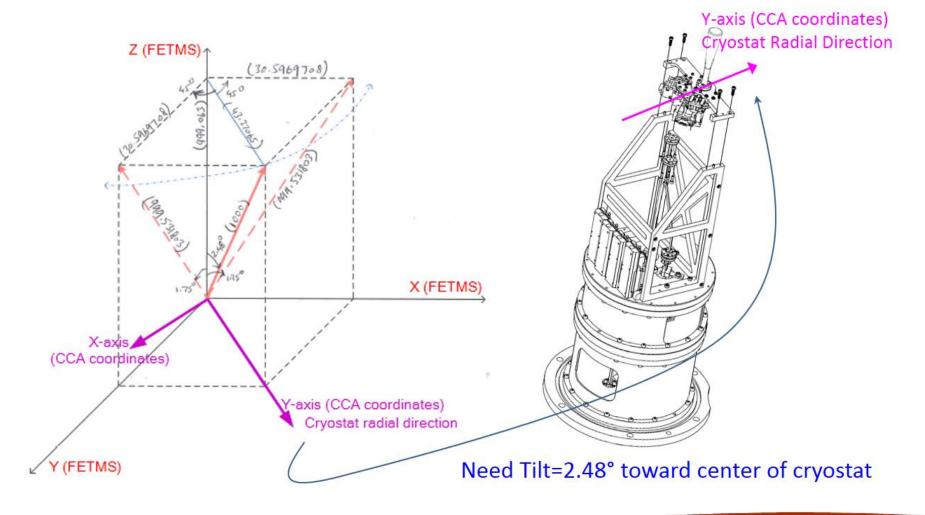


sociated


Inversities los

ALMA Band 2 Cold Cartridge Prototype Orthomode Transducer




sociated

ALMA Band 2 Cold Cartridge Prototype Location of the Band 2 window on the ALMA cryostat

ALMA Band 2 Cold Cartridge Prototype Feed-Horn Alignment

ALMA Band 2 Cold Cartridge Prototype

Optics Assembly Tolerance Analysis

		system	weighting	top-level	2nd level	spec		
		misalignment	coefficient	spec	spec	units	responsibility	notes
	isalignment							
(A0-A1)	Telescope axis to FESS	0.00	4.00	0.00				
	FESS linear	0.00 mrad	1.00	0.00		mm	ALMA	
	FESS angular	0.63 mrad	1.00	0.634		mrad	ALMA	NRAO: "FESS analysis7.pdf"
(A1-A2)	FESS to cryostat		1.00	0.00				
	Cryostat linear	0.00 mrad	1.00	0.00		mm	FEND	
	Cryostat angular	0.28 mrad	1.00	0.279		mrad	FEND	NRAO: "FESS analysis7.pdf"
A2-A3)	Cryostat to 300K plate							
	300K plate linear	1.40 mrad	4.67	0.300				total static linear error in cryostat
	300K plate linear (mfg tol.)				0.200	mm	RAL	RAL: "Tolerance Budget.doc"
	300K plate linear (evacuation)				0.100	mm	RAL	RAL: "Tolerance Budget.doc"
	300K plate angular	0.77 mrad	1.00	0.770		mrad	RAL	total static angular error in cryostat
	300K plate angular (parallelism)				0.170	mrad	RAL	RAL: "Tolerance Budget.doc"
	300K plate angular (evacuation)				0.600	mrad	RAL	RAL: FEND-40.03.01.00-001-A-REP
A3-A4)	300K plate to 15K plate							
	15K plate linear	1.71 mrad	4.67	0.366		mm	RAL	total static linear error in cartridge body
	15K plate linear (mfg tol.)				0.300	mm	RAL	RAL: "Tolerance Budget.doc"
	15K plate linear (cooling)				0.066	mm	RAL	RAL: "Tolerance Budget.doc"
	15K plate angular	0.90 mrad	1.00	0.900		mrad		total static angular error in cartridge body
	15K plate angular (parallelism)				0.400	mrad	RAL	RAL: "Tolerance Budget.doc"
	15K plate anguar (cooling)				0.500	mrad	RAL	RAL: "Tolerance Budget.doc"
(A4-A5)	15K plate to horn aperture							
	Horn linear	0.47 mrad	4.67	0.100		mm	NRAO	ass'y tolerances of RF components
	Horn angular	3.00 mrad	1.00	3.000		mrad	NRAO	total angular error in RF components
	Horn angular (parallelism)				3.000	mrad	NRAO	ass'y tolerances of RF components
(A2-A6)	Cryostat to lens mount							,
. ,	lens mount linear (mfg tol.)	0.93 mrad	4.67	0.200		mm	RAL	RAL: KG0772-050-D
	lens mount angular (parallelism)	0.40 mrad	1.00	0.400		mrad	RAL	RAL: KG0772-050-D
	otal (RSS)	4.12 mrad	_				equal to	0.24 °
	otal (Sum)	10.49 mrad					equal to	0.60 °
	Specification is	5.50 mrad					equal to	0.32 °
	Specification is	5.50 mad					equality	0.52
	= Unknown contribution							
	= Guess - to be confirmed							
	= To be confirmed							
	= preliminary value, could be wrong							

ALMA Band 2/2+3 Workshop (May 23rd-24th, 2016)

sociated

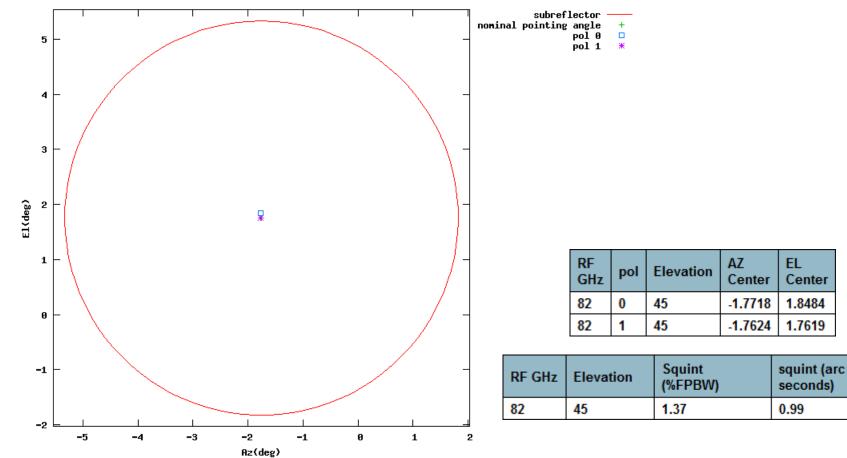
ALMA Band 2 Cold Cartridge Prototype Feed Horn Alignment

	Winchester	Winchester Machine and Tool Metrology Results, Band 2 CCA								
	6/29/2015									
	* Note: me	* Note: measurements include 4mm spacer (Lens 3 configuration)								
	Model	Run 1	vs Model	Run 2	vs Model	Repeatability of Runs				
feedhorn aperture center, x	0.0000	0.0114	0.0114	0.0115	0.0115	0.0001				
feedhorn aperture center, y	1.4322	1.4699	0.0377	1.4713	0.0391	0.0014				
feedhorn aperture center, z	19.2517	19.2654	0.0137	19.2136	-0.0381	-0.0518				
feedhorn aperture angle to base	2.4800	2.8671	0.3871	2.8864	0.4064	0.0193				
omt bracket angle to base				1 2						

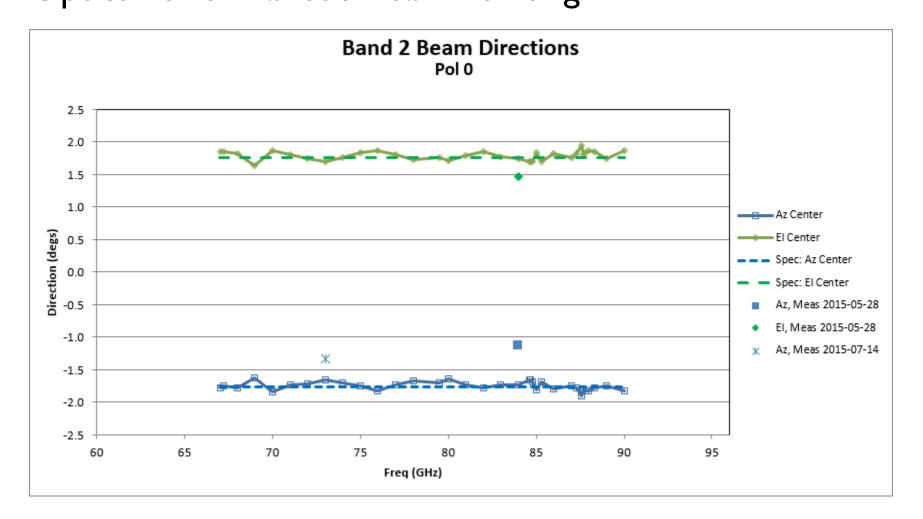
Measured residuals (both offsets and pointing) can be corrected by lens position optimization ...

... but, to be conservative, horn was shimmed to physically correct the horn tilt, and this also removed most of the y-offset residual.

omt waveguide center, x omt waveguide center, y omt waveguide center, z

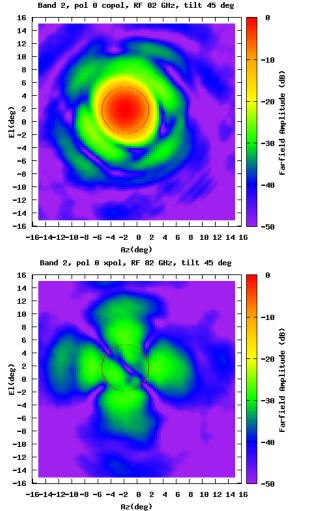


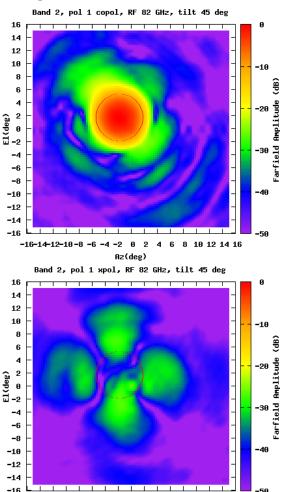
ALMA Band 2 Receiver Prototype Optics Performance / Beam Pointing


sociated

Band 2 Pointing Angles, RF 82 GHz, tilt 45 deg

ALMA Band 2 Receiver Prototype Optics Performance / Beam Pointing


ALMA Band 2/2+3 Workshop (May 23rd-24th, 2016)

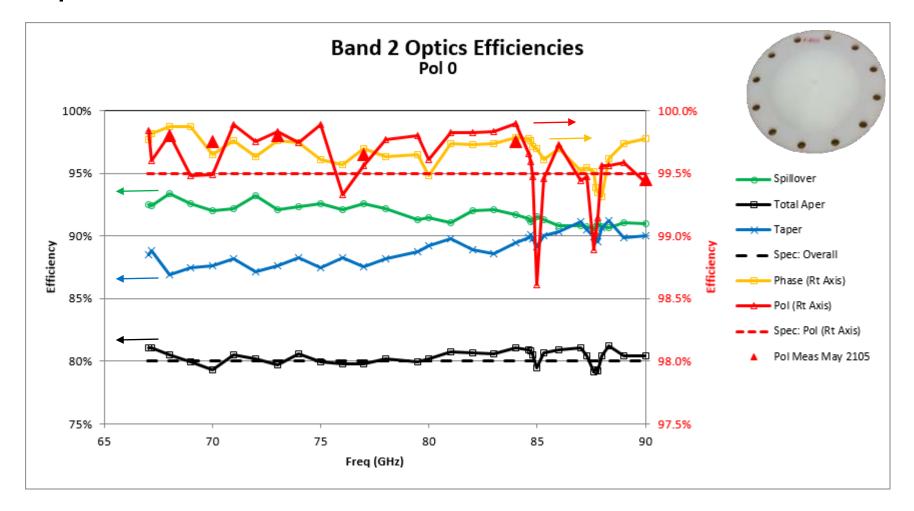

sociated

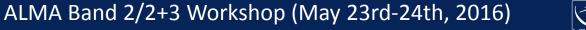
ALMA Band 2 Receiver Prototype

Optics Performance / Beam Patterns

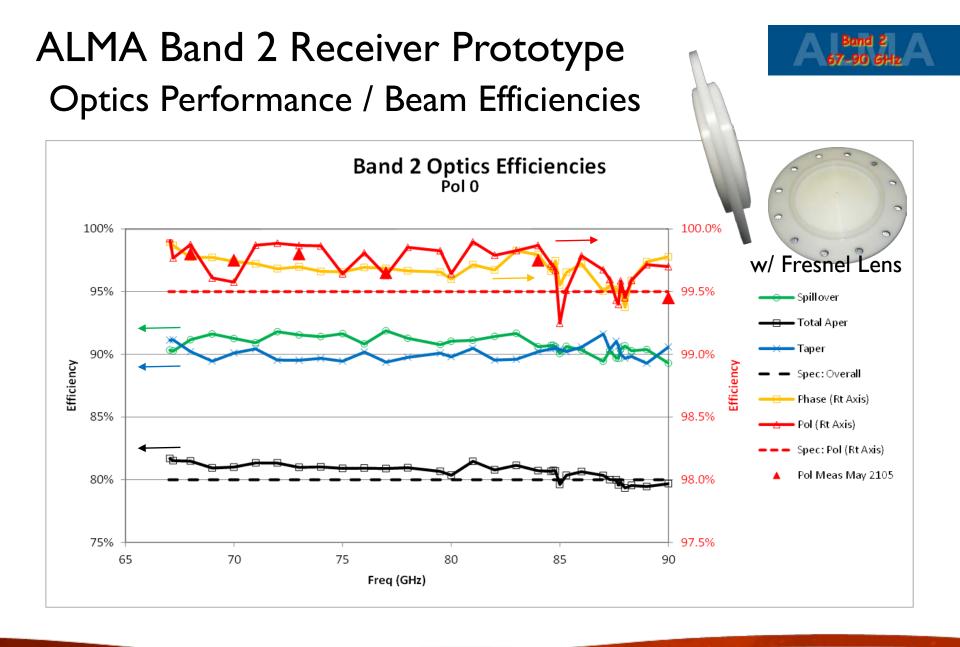
-16-14-12-10-8 -6 -4

-2 0 2

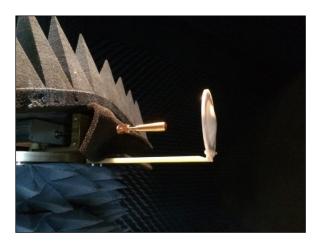

Az(deg)

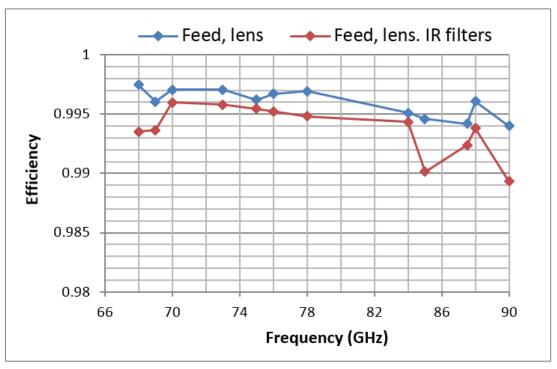

NRAO NSF

ociated

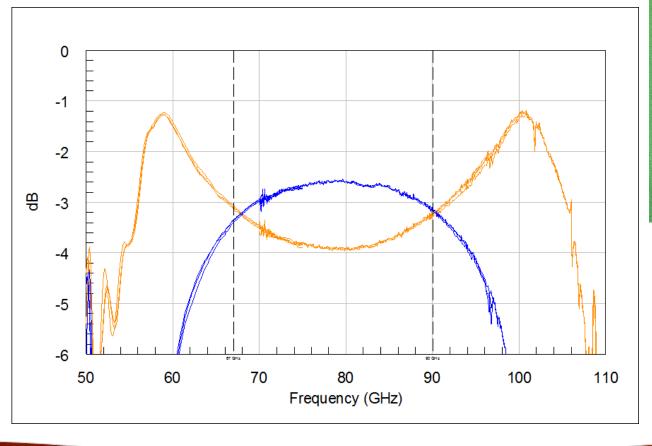

4 6 8 19 12 14 16

ALMA Band 2 Receiver Prototype Optics Performance / Beam Efficiencies

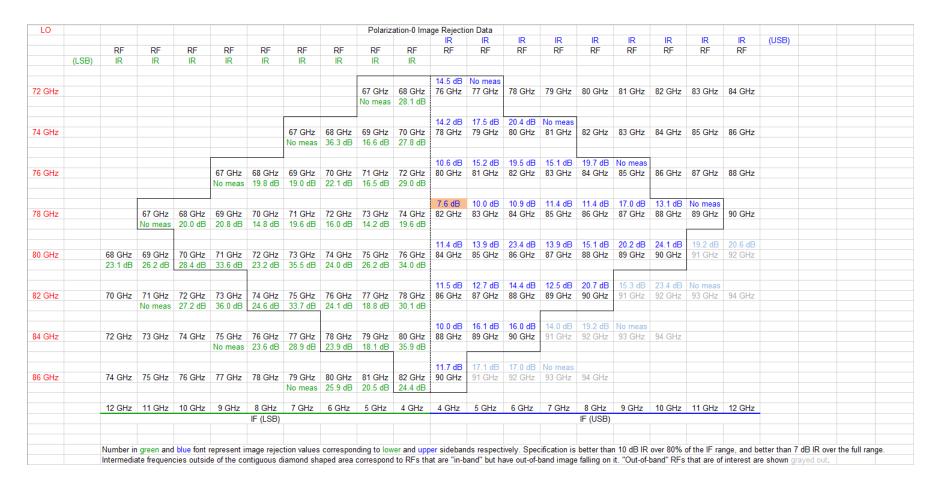

sociated

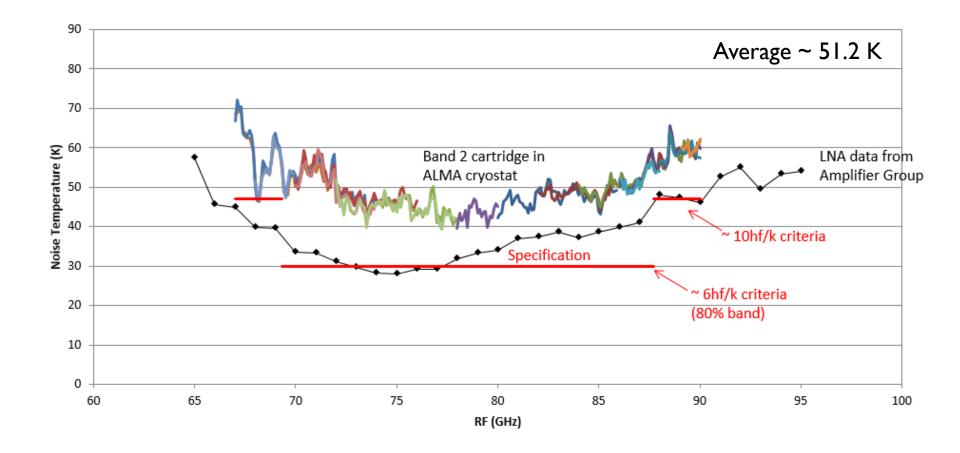


ALMA Band 2 Receiver Prototype Optics Performance / Beam Efficiencies



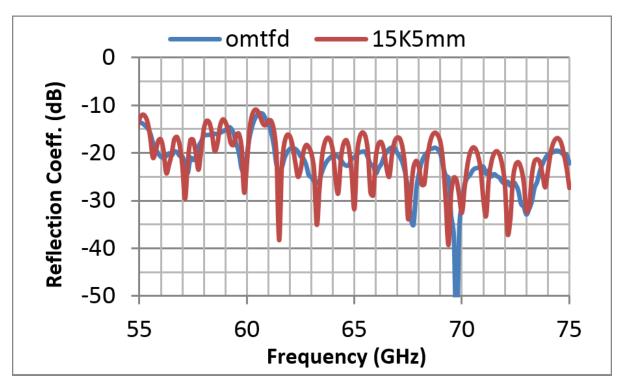

Measured polarization efficiency of feed horn & lens with and without the 15 K IR filter (anechoic chamber measurements).


ALMA Band 2 Warm Cartridge Prototype A


ALMA Band 2 Warm Cartridge Prototype 2SB Downconverter / Image Rejection

sociated

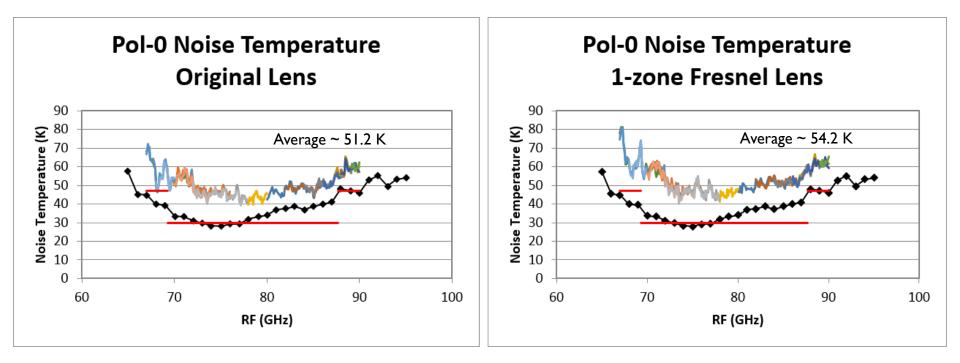
ALMA Band 2 Receiver Prototype Noise Temperature (Polarization-0)


ALMA Band 2/2+3 Workshop (May 23rd-24th, 2016)

sociated

ALMA Band 2 Receiver Prototype

Interaction between 15 K IR filters and CLNA input


Measured reflection coefficient of the OMT plus feed horn without IR filter (trace labeled "omtfd") and that of the OMT plus feed horn with the 15 K IR filter placed 5 mm from the feed horn aperture (trace labeled "15K5mm")

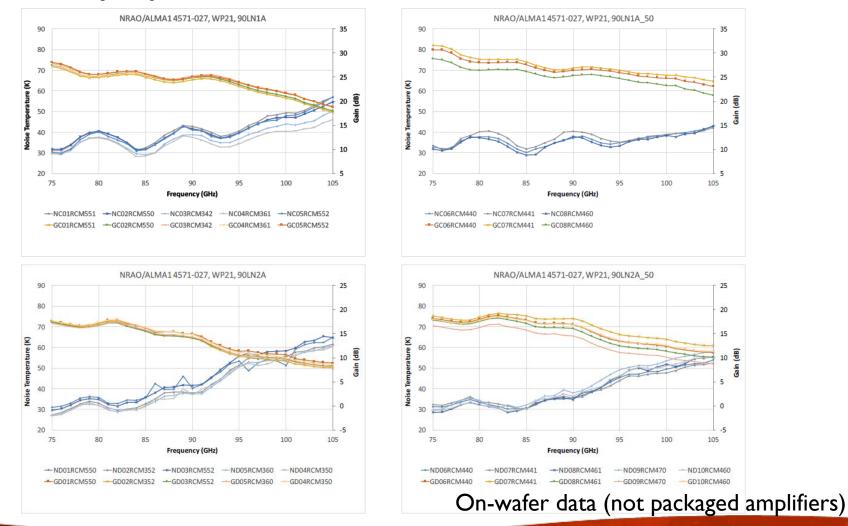
ALMA Band 2/2+3 Workshop (May 23rd-24th, 2016)

39

ALMA Band 2 Receiver Prototype Noise Temperature (Polarization-0)

24th, 2016)

sociated


Band 2, 67-90 GHz

ALMA Band 2 Prototype Project Status of the CRAL MMIC effort

- First wafer run (NGC) with multiple Band 2 LNA MMIC design variants completed in December 2015.
- All four wafers were successful, with good yields (room temperature testing completed on all wafers).
- Cryogenic probing of two wafers at CRAL indicates that there are several promising design variants for Band 2 application.
- Next step is to package them into test blocks to qualify their performance, to identify designs that can be used for Band 2 multi-stage amplifier for integration into the prototype cartridge.
- Once the performance is confirmed, proceed to pick the corresponding chips from the NGC wafers and store for the full construction phase.

ALMA Band 2 Prototype Project Some Cryo-probe results from NGC ISHR3 wafer

sociated

ALMA Band 2 Prototype Project

Some Cryo-probe results from NGC ISHR3 wafer

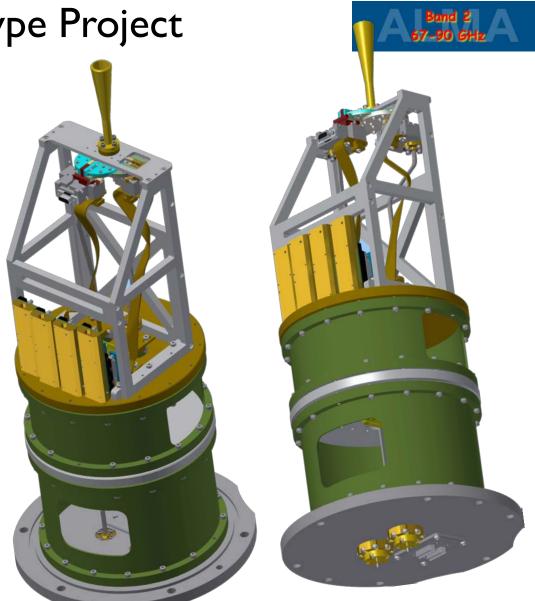
Performance statistics at mid-band frequency (78 GHz)

			Func	nctional Noise Temperature Gain			Noise Temperature			
WP	Design	# Probed	#	%	Mean	Median	Std. Dev.	Mean	Median	Std. Dev.
22	90LN1A	10	9	90	34.3	34.8	1.3	25.8	25.9	0.6
	90LN1A_50	10	5	50	34.2	34.2	1.5	27.3	26.7	1.6
	90LN2A	10	8	80	34.0	34.9	1.9	16.5	16.5	0.7
	90LN2A_50	10	7	70	32.5	32.2	1.7	16.5	16.4	0.7
	EBLNA81BC	15	13	87	42.7	41.2	4.9	23.3	23.5	0.8
24	90LN1A	13	11	85	35.6	35.5	1.1	27.7	27.8	0.6
	90LN1A_50	15	13	87	36.1	36.6	3.2	29.7	29.6	0.9
	90LN2A	12	9	75	45.8	44.6	3.3	17.4	17.4	0.3
	90LN2A_50	15	9	60	41.5	39.7	6.2	18.2	18.3	0.7
	EBLNA81BC	15	11	73	40.2	40.2	3.1	27.4	27.4	0.6

Chip Counts

		Functional Yield, wa	nfer 027 (75% In)	Functional Yield, v	wafer 030 (100% In)
Design	Total/wafer	%	#/wafer	%	#/wafer
90LN1A	69	90	62	85	58
90LN1A_50	26	50	13	87	22
90LN2A	68	80	54	75	51
90LN2A_50	26	70	18	60	15
EBLNA81BC	345	87	300	73	251

Next wafer run planned for in ~ December 2016.


On-wafer data (not packaged amplifiers)

ALMA Band 2 Prototype Project Next Steps ...

- Finish evaluation with CRAL MMIC based amplifiers and update relevant project documentation as well as test reports.
- Review Band 2 Noise Specifications.
- Preliminary Design Review.
- Propose a build-out for Band 2 under the upcoming NA Development Project Call in October 2016.

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

