

ALMA Band 2-3 Feedhorn and OMT developments @ INAF

R. Nesti

Arcetri Astrophysical Observatory, Italian National Institute for Astrophysics, Largo Enrico Fermi 5, 50125 Firenze, Italy, nesti@arcetri.inaf.it

Band 2-3 waveguide component design

Challenging but not impossible

Band 2-3 Feed and OMT Specifications

Feed Horn Specifications			
	Band 2	Band 2/3	
Bandwidth [GHz]	67-90	67-116	
Return loss [dB]	>30	>30	
Insertion loss [dB]	TBD	TBD	
Cross-Polar Maximum [dB]	<-30	<-30	
ET [dB@deg]*; W0[mm]*	12@17; 4.73	12@17; 4	
Technology	Circular Corrugated Horn	Circular Corrugated Horn	
Throat Flange	UG387/U	UG387/U	
Throat input diameter	TBD	TBD	
Max envelope	TBD	TBD	

Orthomode Transducer Specifications				
	EM Simulation	Measurements		
Bandwidth [GHz]	67-116			
Return loss (Input and Output ports) [dB]	>20	>15		
Insertion loss [dB]	<0.5	<0.5		
Cross-Polar Maximum [dB]	<-30	<-20		
Output ports Isolation [dB]	<-30	<-25		
Throat Flange	UG387/U			
Input diameter (Band 2; Band 2/3) [mm]	(TBD; 2.93)			
Output dimensions (Band 2; Band 2/3) [a x b, mm]	(TBD; 2.5 x 1.2)			
Max envelope	TBD			

Band 2-3 Feed Design

37.91

ALMA Band 2-3 Feedhorn and OMT developments @ INAF

Band 2-3 OMT Design

Band 2-3 Feed-OMT Engineering

Band 2-3 Feed-OMT Prototyping

Band 2-3 Feed Testing Reflection coefficient: measurement and TD filtering

(19)

Band 2-3 Feed-OMT assembly Testing Reflection coefficient: measurement

Band 2-3 Feed-OMT assembly Testing Isolation between output ports (X, Y): measurement

Band 2-3 Feed-OMT assembly Testing OMT X-channel reflection coefficient: measurement (TD)

Band 2-3 Feed-OMT assembly Testing OMT Y-channel reflection coefficient: measurement (TD)

Band 2-3 OMT Testing OMT loss: measurement

Freq. [GHz]

Band 2-3 OMT Testing OMT added noise @20K: from loss measurement

Further investigations

Feed cross-polarization need to be improved
New design for the feed top flange

Further investigations

- OMT loss need to be improved
 - New OMT design
 - Shorter waveguide paths
 - New material (brass)

1

Further investigations

Old Assembly

Measurement:

TD gating

Freq. [GHz]

S₁₁ [dB]

Isolation: Measurement

Band 2-3 Brass OMT

Band 2-3 Brass OMT

Band 2-3 Brass OMT

Loss: Measurement vs Simulations

67 70.5 74 77.5 81 84.5 88 91.5 95 98.5 102 105.5 109 112.5 116

Freq. [GHz]

Band 2-3 BrassOMT

Added noise temperature @ 20K: From loss measurement

Band 2-3 Feedhorn Beam Measurement

Co-polar component measurement: E and H planes

Band 2-3 Feed: E-plane Meas Vs Sim

23/05/2016

ALMA Band 2-3 Feedhorn and OMT developments @ INAF

25/30

Band 2-3 Feed: H-plane Meas Vs Sim

23/05/2016

ALMA Band 2-3 Feedhorn and OMT developments @ INAF

26/30

Band 2-3 Feedhorn Beam Measurement

Cross-polar component measurement: E and H planes

Band 2-3 Feedhorn Beam Measurement

Cross-polar component measurement: 45 deg plane

Band 2-3 Feed: 45° Cross-polar Beam Measurement

23/05/2016

ALMA Band 2-3 Feedhorn and OMT developments @ INAF

29/30

Band 2-3 Feedhorn and OMT Conclusion

ALMA Band 2-3 Feedhorn and OMT recent developments demonstrate that Band 2-3 feedhorn and OMT are feasible even if challenging.....

.... Thank you for your attention