

Band 2+3 Workshop Aims of the Meeting

Robert Laing, ESO

Outline

- Context
 - ALMA Development Programme
 - ESO Call for Studies
- Objectives
 - Understand current status
 - Face-to-face meeting for EU/Chile/NAOJ Study: Band 2+3
 - Update on NRAO project: Band 2
 - Discuss key technical areas
 - Specifications: noise, IF bandwidth, ...
 - Optics
 - LNA's
 - Path to production
 - What to build
 - Collaborations

Follow-up of Florence meeting in 2014 Many more test results

ALMA Development Programme

- ALMA has a funded Development Programme
 - Total US\$ ~13.5M / year (currently)
 - Split 37.5/37.5/25% EU/NA/EA
- Regional flavours
 - Small Development Studies
 - EU and NA fund in open competition
 - Band 2+3 (2010, 2013)
 - Larger Projects
 - EU strategy has been to concentrate resources on one large project at a time (currently Band 5)
 - NA has funded a larger number of medium-scale projects: Band 2 prototype
 - EA about to embark on Band 1 full production
 - Leverage national and EU funding
 - EU FP6 Programme for Band 5 pre-production
 - ALMA Phasing Project (NSF, MPIfR)
 - Band 2+3 STFC, INAF, U Chile

Near/mid-term Development Strategy

- Initially driven by the regions; now more coordinated
- Top priority: complete commissioning of rebaselined ALMA trilateral programme
 - Full polarization, single dish, observing efficiency, solar modes, ..
- Then: restore capability lost in descopes before 2005
 - mmVLBI; Bands 1, 2, 5; subarrays; data rate
 - whenever possible, tighten specifications, use new technology
- In parallel: studies in support of future programme
 - Increase bandwidth to at least 16 GHz/polarization
 - Improved receivers, digital electronics, correlator, software
 - Reliability and operational cost reduction (e.g. cryocooler)
 - Software

ALMA 2030 and follow-up

- Science priorities for ALMA Development
 - Led by ASAC + Regional Programme Scientists
- Outputs
 - Major Science Themes 2020-2030
 - Landscape of major facilities in 2030
 - Pathways to Developing ALMA
- Development Working Group (2016-17)
 - Led by ALMA Director
 - Observatory Scientist + Regional Programme Scientists + JAO Systems
 Engineer + ...
 - Starting from ALMA2030, articulate a strategy for ALMA Development with priorities and approximate costs

ESO Development Plan Studies 2016 Call

- Follows Calls for Studies in 2010 and 2013 (both including Band 2+3)
- Process
 - Call ~ now
 - Deadline August/September
 - Review October 2016 (ESO/ESAC)
 - Start ~Jan 2017
- Topics
 - Preparation for production
 - Software (e.g. data analysis, simulations)
 - Research and development studies (hardware and software)
 - Calibration techniques (phase, amplitude correction, ...) and new observing modes
 - New: focus on ALMA2030 objectives, particularly increased bandwidth

Workshop here, Wednesday - Friday

Bands 2 and 2+3

- Band 2: 67-90 GHz
 - T < 30K (80% band), 47K (full band)
 - Original concept single sideband, 4-12 GHz IF
- Band 3: 84-116 GHz
 - In operation
 - T < 37K (80% band), 60K (full band)
 - SIS, sideband-separating, 4-8 GHz IF
- Band 2+3: 67-116GHz
- Science cases for Band 2 and 2+3
 - Fuller et al. arXiv 1602.02414
 - Beltran et al. arXiv 1509.02702
 - NRAO Band 2 Science Workshop 2013
 - Talks by Gary Fuller and Al Wootten

The story so far

- ESO Studies
 - Focused on feasibility of full frequency range 67-116 GHz
 - 2010 (U Man, IRAM, INAF, RAL): science case, optics and system designs, prototype feed horn and OMT
 - 2013 (U Man, INAF, RAL, U Chile, NAOJ, ESO)
 - Consider (but rule out) SIS design, warm/cold reflective optics
 - Phase A (complete): bench test of optics (lens, feed horn, OMT)
 - Conclude that wideband system is feasible
 - Phase B (just starting): prototype ALMA cartridge, including optics, LNA and downconversion (series of talks)
 - LNA design and test (Danielle George)
- NRAO Project
 - Prototype Band 2 cartridge
 - Test results (Kamaljeet Saini)

Band 2+3 Strategy

- Band 2
 - General agreement on importance of science case
 - Prototype cartridge development by NRAO to meet original ALMA specification but with 16 GHz IF bandwidth
- Band 2+3 or Band 2 EU/ESO view
 - We should now be designing to meet more ambitious science specifications if this is technically feasible
 - The next generation of receivers should aim to meet the requirements set by ALMA2030
 - There are science drivers for a wider band (67 116 GHz)
 - This would also free up a 4K slot in the cryostat
 - Optics, feed horn and OMT will work over the full range
 - Even if production LNA's do not initially cover the full range, we should consider designing the optics and LO to support it with a view to future upgrades
- But:
 - Must at least maintain performance in Band 3 as well as meeting existing Band 2 specifications with 16 GHz bandwidth per polarization

Key Questions

- Specifications
 - What is the right goal for IF bandwidth? 16GHz/polarization or even higher?
 - Noise temperature: ambitious but realistic goals
- Optics
 - Warm lens is a major contributor to the noise: do we have the best material/design?
- LNAs
 - What is the state of the art?
 - What are the compromises between noise temperature and bandwidth?
- System Design
 - Any other concerns?
- Strategy
 - Band 2, Band 2+3 or evolution?
- Production
 - Who, what, when?