Large-scale structure in the 2020s

John Peacock

ESO in the 2020s

21 Jan 2015

• Past advances and tools of the trade

• Current and near-term goals

• Planned experiments and alternatives

A century of galaxy redshifts

No.8

LOWELL OBSERVATORY

BULLETIN No. 58

VOL. II

THE RADIAL VELOCITY OF THE ANDROMEDA NEBULA

1912,	September	17,	Velocity,	-284 km.
	November	15-16,	44	296
	December	3-4,	44	308
	December	29-30-31,	**	-301
		Mean velocity	γ,	-300 km.

V.M. Slipher (1875-1969)

1913: M31 v<0 1915: 11/15 v>0 1917: 21/25 v>0 1923: 36/41 v>0 The expanding universe

Pre-1980s: angular studies

Peebles correlationfunction programme, applied to Shane-Wirtanen Lick galaxy map.

'morphological segregation' - i.e. different correlations for different galaxy types (Davis & Geller 1976)

CfA surveys

Accelerated progress from electronic detectors CfA1: 2396 z's 1977-1982 CfA2 : 18,000 z's 1984-1995

Cosmic web: voids, sheets, filaments

Peebles: this would only arise via 'Zeldovich pancakes' – collapse of a matter distribution with only large-scale structures (pure baryons; massive neutrinos)

But 1990s Cold Dark Matter simulations clearly showed filaments as chains of dark-matter haloes

The multiplex revolution: fibres

year

LCRS

- 26,418 z's 1991-1998
- Demonstrated the 'end of greatness'

2dFGRS

SDSS

- Current state of the art
- 1.8M z's 2002-2013

2dFGRS power spectrum: small BAO proves DM

d (fractional variance in density) / d ln k

power:

Percival et al. MNRAS 327, 1279 (2001)

Baryon Acoustic Oscillations in the CMB

The (comoving) distance that sound waves travel by recombination sets the length of the BAO cosmic ruler at t = 380,000 years:

$$l_{\text{BAO}} = \int_0^{t_{\text{rec}}} \frac{C_{\text{s}}}{a} dt \approx \frac{c}{\sqrt{3}} \frac{t_{\text{rec}}}{a_{\text{rec}}}$$
$$a_{\text{rec}} = 1/1100$$

'Baryon wiggles' at 1 degree (& 0.3, 0.2, 0.1...):

oscillations of baryonic gas falling under dark matter gravity

Freezing in the BAO scale

Care: not the origin of fluctuations. BAO smooths existing structure Based on CMBfast outputs (Seljak & Zaldarriaga). Green's function view from Bashinsky & Bertschinger 2001

Acoustic Peak in 2014

• SDSS-III BOSS gives a strong BAO detection, measuring the acoustic scale to 1% at z=0.57.

A Standard Ruler

- The acoustic oscillation scale depends on the sound speed and the propagation time.
 - These depend on the matter-toradiation ratio $(\Omega_m h^2)$ and the baryon-to-photon ratio $(\Omega_b h^2)$.
- Measurements of CMB anisotropies imply these and fix the acoustic scale.
- In a redshift survey, we can measure this along and across the line of sight.
- Yields H(z) and $D_A(z)$

The Cosmic Distance Scale

Anderson et al. (2014)

The Lyman α Forest

- The $Ly\alpha$ forest in each quasar spectrum tracks the density of the intergalactic medium along each line of sight.
- A grid of sightlines can map the 3-d density at z>2.
- An efficient way to measure the BAO at z>2.

White (2004); McDonald & Eisenstein (2006)

BAO in the Forest in 2014

- BOSS has now produced a strong detection (>5σ) of the BAO in the correlations of the Ly α forest
- Tight measurement of the Hubble parameter and angular diameter distance at z=2.4.

BAO detection along the line of sight from correlations between 140,000 z>2 quasar spectra. Busca et al., Slosar et al. Delubac et al., Font-Ribera et al.

BAO limits on DE equation of state (w = P / ρc²)

 $w(a) = w_0 + (1-a)w_a$

Redshift-Space distortions of ⁽⁴⁾ clustering

2dFGRS first survey to benefit from detailed mock samples

Mock 2dFGRS from Hubble volume

z space

Eke, Frenk, Cole, Baugh + 2dFGRS 2003

Redshift-Space Correlations

- RSD due to peculiar velocities are quantified by correlation fn (excess fraction of pairs) ξ(σ,π)
- Two effects visible:
 - Small separations on sky: 'Finger-of-God';
 - Large separations on sky: flattening along line of sight.

A route to modified gravity

Cosmology needs to test Einstein gravity

Dark energy: all current measurements relate to expansion rate, assuming H(z) comes from Friedmann equation

$H^{2}(z) = H^{2}_{0} \left[(1-\Omega) (1+z)^{2} + \Omega_{M} (1+z)^{3} + \Omega_{R} (1+z)^{4} + \Omega_{DE} (1+z)^{3(1+w)} \right]$

RSD as test of modified gravity (Guzzo et al. 2008)

• Adopt longitudinal gauge (in effect gauge-invariant)

$$d\tau^2 = (1+2\Psi)dt^2 - (1-2\Phi)\gamma_{ij}\,dx^i\,dx^j$$

Einstein: $\nabla^2\Phi/a^2 = 4\pi G\,\bar{\rho}\,\delta$ and $\Psi = \Phi$

• In MG, potentials can differ ('slip': affects lensing), plus Poisson equation is modified.

$$\Phi = (1 + \varpi(a, k))\Psi; \quad \nabla^2 \Phi = \mu(a, k) \, 4\pi G \, \bar{\rho} \, \delta$$

• Combine to affect growth of fluctuations

$$d\ln\delta/d\ln a \simeq \Omega_m(a)^\gamma; \quad \gamma_{\rm Einstein} = 0.55$$

Studying the cosmic web at redshift 1 with VIPERS

VIPERS V3.0 density field: 55,359 redshifts (64% of total survey)

Growth rate: current state

DESI (BigBOSS), eBOSS (SDSS-IV), Sumire-PFS (WFMOS), Euclid will push towards 1% precision at higher z – eventually

Add lensing for overall MG constraints (1212.3339)

Amicable divorce in LSS

• Astrophysicists

- Want to understand galaxy formation within LSS
- Want highest possible number density (deep)
- Want high-quality spectra
- Happy with representative volume (<1 Gpc³)
- Fundamentalists
 - Want better precision on DE/MG
 - Need volume wide area, not depth
 - Happy with redshifts only

Empirical cosmic web in GAMA

Eardley et al. 1412.2141

GAMA = 2dFGRS + 2 mag (250k z's)

Follow Forero-Romero et al. (2009): Take Hessian of potential and count eigenvalues above threshold ~1

Empirical cosmic web in GAMA

Change in shape of galaxy LF within web – but consistent with correlation with local overdensity only: no impact of tidal forces on formation history
Data needs

BAO % D error = (V / 5 h⁻³ Gpc³)^{-1/2} £ (k_{max} / 0.2 h Mpc⁻¹)^{-1/2} £(1+1/nP)/2

- Fundamentalism limited by cosmic variance based on mode counting
 - With typical P=2500 (h⁻¹Mpc)³) need n >= 4 £10⁻⁴ (h⁻¹Mpc)⁻³. Shot noise unimportant beyond this
- Over 0.5 < z < 1.5, $V = 1h^{-3}$ Gpc³ needs 375 deg²
 - So all sky (33M z's) gives 0.25% (x4 improvement)
- Astrophysics probably happy with $0.1h^{-3}$ Gpc³ at n = 0.02
 - 2M z's over 40 deg² feasible with MOONS

Area more important than quality

Simulated spectra for Subaru PFS: detect OII 3727 only. Legacy value is a big issue

Alternatives?

Multi-tracer analysis

McDonald & Seljak (0810.0323. See also 1003.3238): cosmic variance from finite numbers of superclusters is in common between red & blue. No good with dilute tracers

Studying LSS without spectra?

Dispersed imaging

Photometric redshifts

Radio imaging and intensity mapping

PRIMUS

Magellan prism: dz / (1+z) = 0.005(17 Mpc/h @ z=1) **Resolution limits** both evolution and LSS studies 130k to r = 23 over 9 deg²

PAU: Photo-z on steroids

40-band survey using WHT: dz / (1+z) = 0.0035(12 Mpc/h @ z=1) Significant effects on BAO & RSD, but can be modelled

All-sky photo-z for WISE+SuperCOSMOS

ANNz Using (B,R,W1,W2) and GAMA spectroscopy $\sigma_z / (1+z) = 0.032$ (0.015 with 2MASS)

Median z = 0.2; useful signal out to z = 0.4 (double 2MASS)

Unlensed CMB: 6 arcmin image (MPIA)

Lensed CMB: 6 arcmin image (MPIA)

Lensing convergence: FWHM = 0.05 radian

Projected mass distribution back to z = 1100

Theory (Hu; Lewis & Challinor)

Low z: $C(<z) / C = 0.1 z (1 / 100)^{-0.8}$

Implies correlation 0.07 (I/100)^{-0.4} in all dz = 0.05 slices

Direct measure of growth of DM fluctuations: should be signal up to z > 5

Lesson: power of all-sky surveys

• Finish VHS; UKIRT alternative?

• Northern complement to LSST? (Nice for Euclid)

HI Intensity Mapping

Even with SKA, 21-cm z's hard. But who needs galaxies? Cover large areas of sky at low resolution.

CHIME: 400-800 MHz (z=0.8-2.5). Hemisphere survey 2016-18. 0.5% in D(z)

Back to spectroscopy:

What are the expected LSS probes in the 2020s?

DOE proposal for KPNO 4m over 2018-2022:

5000 Fibres; 3-deg field

28M galaxies

- LRGs to z=0.9
- OII ELGs to z=1.7

(+800k QSOs)

Other 4m projects: 4MOST & WEAVE

4MOST: 2000 fibres; 2.3-deg field on VISTA. 2019– WEAVE: 1000 fibres; 2-deg field in WHT. 2017–

Both motivated primarily by GAIA follow-up. Also BAO surveys, but not fully specified yet

MOONS

- 1000 Fibres on VLT
- 0.6 to 1.8 microns
- Perfect for galaxy evolution over 0.8 < z < 1.8
- But limited by 28-arcmin Nasmyth field

Subaru PFS

- 2400 Fibres over 1.3-deg field on 8.2m
- R=3000 spectra from 0.4 to 1.3 microns
- Multinational project led by IPMU Tokyo
- Planned first light 2017
- Shared telescope: sufficient time?

Euclid slitless spectroscopy NIS Instrument:

- ~ 25M redshifts in 1<z<2
- 15,000 deg²
- H < 19.5

Euclid (2020-)

Need sub-% accuracy modelling: is this feasible?

year

year

Fantasy facilities

- Fundamental cosmology wants ~ 10⁴ deg² spectroscopy
 - Legacy and robustness demands good S/N
 - 4m inadequate: need 8m-10m telescope
 - Dedicated PFS equivalent needed: still room for VLT5
- Strong need for all-sky data at least in imaging
 - New VST camera for southern Pan-STARRS?
 - VISTA/UKIRT could still do deeper 2MASS
 - Northern LSST?
- ALMA-style global collaboration needed