The future of reionization

IoA

UNIVERSITY OF

European Research Council

Probing the Epoch of Reionization

- > CMB
- Lyman-alpha absorption
- Lyman-alpha emitters/high redshift galaxies
- > 21cm emission/absorption

Homing in on the reionization history

Robertson et al. 2013, Ellis 2014

Chornock et al. 2014

But how early does it start, how late does it finish?

CMB

The (still preliminary) Planck 2014 results for τ

constraints from CMB have become very weak.
joint constraint with BAO appears to come down

Lyman- α (and OI) absorption

Searching for a Gunn-Peterson trough in QSO absorption spectra

$$\tau_{GP} \approx 10^5 \left(\frac{n_{HI}}{n_H} \right)$$

Fan et al., Becker et al.

Red damping wings in QSO/GRB spectra with E-ELT

Maiolino, Haehnelt et al.

 should break degeneracy with N_{HI} in host galaxy
 proposed M4 mission THESEUS aims to detect 100 GRBs with z>6

Harvesting the OI forest E-ELT

> OI good tracer of HI at z>6 when Lya is highly saturated

ESO 2020, 21 February 2015

High-redshift QSOs from VHS/DES

- DES has officially started to take (optical) data 31 August 2014 and will complement the IR data from VISTA
- > New z>7 QSOs will hopefully be rolling in soon.

Lyman-α emission High-redshift galaxies

European Research Council

erc

Choudhury, Puchwein, Haehnelt& Bolton 2015

- The rapid decline of Lyα emission at at z>6 is reproduced for by a modest decline of the volume-weighted ionized fraction perhaps aided by an evolution of the intrinsic red offset
- ➢ Reionization appears to finish somewhat later than predicted by HM2012
- Should be possible to probe bubble size and topology of reionization with Hyper Suprime Cam

- > JWST will reach about four magnitudes deeper and reach to z=20
- characterisation of physical properties with help of good spectra
- \succ hopefully/possible escape fractions from Ha vs Lya

21cm

21 cm emission

The rms and Cross-rms

LOFAR (and PAPER) appear to be proceeding well
SKA is gaining momentum

Summary

- evidence is building for a rather late reionization from
 - rapide demise of Lya emitters
 - QSO absorption spectra/near zones
 - ionizing emissivity
 - reduction of Thomson optical depth (CMB)
- lots of new data expected
 5 years: LOFAR, VISTA/DES and follow up
 10 years: JWST and follow up
 15 Years: E-ELT, SKA

