The Milky Way as a Galaxy

Amina Helmi

The Gaia revolution

Unparalleled dataset with motions and positions for 10⁹ stars across the Milky Way 10⁴ times more stars with full phase-space information; 10⁶ volume increase; 100x more accurate Completely new view of the Galaxy!

Science topics

The Milky Way

What is the origin/formation epoch/mechanism and relation between the various components?

The Milky Way is a Rosetta stone

- We can observe individual stars and measure their properties
- Distributed in various Galactic components, each with specific characteristics
 - Different clues to history; for example, halo stars are as nearly as old as the Universe

Galactic Archaeology

- Key ingredient of galaxy formation: mergers
 - Were mergers important for Milky Way?
 - How often and when did they happen?
 - What were the building blocks?
- Stars are "fossils"
 - Motions, ages, chemical composition trace origin
 - Substructures pinpoint to debris from accretion events
 - Probe force field → mass (gravity)

snapshots: J. Gardner

Testing the cold dark matter paradigm ls this "picture" correct?

• Are galaxies like the Milky Way embedded in dark matter halos like those predicted by the cosmological model?

Testing the cold dark matter paradigm Is this "picture" correct?

 Are galaxies like the Milky Way embedded in dark matter halos like those predicted by the cosmological model?

Testing the cold dark matter paradigm ls this "picture" correct?

- Are galaxies like the Milky Way embedded in dark matter halos like those predicted by the cosmological model?
- How much dark matter is there?
 - how is it distributed?
 - what is the dark matter?
- Is Gravity correct?

Studies of the Milky Way: Detailed view of physical processes in galaxy evolution

Star-formation

initial mass function, star clusters and cluster mass function, star formation profile along Galactic plane, link to dynamics/structure and environment, cold flows/gas accretion/ IGM

Dynamics

Central few parsecs (near SMBH), bar/bulge and impact on other components, dark matter and rotation curve, spiral structure, tidal shredding, warping

Chemical enrichment

Stellar yields, primordial nucleosynthesis, role of massive stars, binaries, first stars, link to ISM, environment, formation timescales

Gaia

Data collection stats

Number of astrometric observations per square degree up to Oct 17

Whole sky seen by Gaia! — Up to 65 million per square degree

As of End Jan 2015: 16 billion astrometric/photometric transits, 1.6 billion spectroscopic

Scientific performance predictions

Performance predictions for G2V star			
V magnitude	Astrometry	Photometry	Spectroscopy
	(parallax)	(BP/RP integrated)	(radial velocity)
3 to 12	5–14 μas	4 mmag	
3 to 12.3			$1 {\rm km s^{-1}}$
15	$24~\mu as$	4 mmag	
15.2			$15 \; \text{km s}^{-1}$
20	$540~\mu as$	60 (RP) – 80 (BP) mmag	

Calculations by: Airbus DS, D. Katz, C. Jordi, L. Lindegren, J. de Bruijne

• Full 6D phase-space information only available for a subset

-> Incomplete dynamical map of the Galaxy

Gross abundances (Fe/H], [alpha/fe] only for a subset of brightest stars

-> MDF only known within few kpc from the Sun, in sections of the bulge or in dwarf galaxies

Detailed elemental abundances missing

-> crucial for chemical history, star formation and assembly history

•Ground-based synergetic follow-up/supplementary surveys are a must

What do we know now about the Milky Way?

Some recent highlights and some interesting questions

The Milky Way bar and spiral arms

- Peanut-shaped bar/bulge from VVV, also explains kinematics in inner regions (Martinez-Valpuesta & Gerhard 2011; Ness et al. 2013)
 - Is there also a long bar? (Lopez-Corredoira et al. 2005)
 - How fast does bar rotate?
- Bar and spiral arms influence dynamics of disk stars
 - Streaming (non-circular) motions and the wobbly Galaxy from RAVE

•Generally important: physics of disks, build up of disks, bars and bulges, throughout cosmic time

Coma Berenices

Hipparcos stellar velocity distribution

- Lots of structure in the u-v plane.
- The most prominent low-velocity moving groups in the solar neighborhood favor a dynamical origin (Famaey et al. 2008, Bovy & Hogg 2009).
- Created near resonances with bar or spiral structure

High-resolution (I - 5 km/s)velocity maps of disk (beyond Sun) constrain both bar angular velocity and orientation

With detailed abundances how star formation proceeded in disk

→ 4most complementing Gaia

The thick disk

- Older, more metal-poor stars -> more pristine
 - link to high-z disks, clumpy-disks (Elmegreen++2009, Förster-Schreiber et al 2011)
- Existence as separate physically distinct from thin disk highlydebated
 - role of radial migration (Schonrich & Binney 2009; Bovy, Rix & Hogg 2012)
- Accurate detailed abundances: critical

Recio-Blanco et al. 2014

Orbital eccentricity: indicator of formation paths

- Prominent peak at low eccentricity rules out accretion model
 - Most thick disk stars formed in-situ
- Shape near the Sun appears most consistent w/merger model
 - Need to probe beyond Sun's vicinity (different mechanisms dominate at different radii)

The stellar halo

- Most metal-poor and ancient stars
 - window into the early Universe
- Orbiting outskirts of galaxies: good mass probes

- Can form from the superposition of disrupted satellites
- Some fraction (?) likely formed in-situ
 - •In gas rich mergers
 - Scattered off from disks during mergers

Helmi et al. (2011)

The Galactic halo from SDSS/PanStarrs

Kinematics for large numbers of halo stars: crucial

Kinematics for large numbers of halo stars: crucial

100s more predicted and possibly hiding...

How to find these? Gaia!

- Clustering in conserved quantities
- Follow-up:
 - SFH and chemical evolution of building blocks

Halo metallicity distribution function

-Very small number of extremely metal-poor stars known to date

- -Direct counts provide constraints on the IMF at high-redshift e.g. there may be a critical Z below which only very massive stars form
- -Currently limited by small number statistics

Salvadori et al. 2007

Spectroscopic survey of 10⁵ halo stars at intermediate resolution to identify candidates for follow up -> Wide-field, deep & 100 multiplex

Chemistry of metal-poor components

Caffau et al. 2013

Knowledge of very metal-poor stars detailed abundance patterns -> high-res slit spectroscopy (follow-up from Gaia, 4most, Skymapper, ...) > also for distant stars (8m + E-ELT)

- Constraints on the IMF
- •On the nature of the first stars and explosions (SN or HN)
- On the early history of the Galaxy

The dark halo

- Critical for what is dark matter
 - link to cosmological model; constraint on nature of particle / Gravity
- Total mass: $7 \times 10^{11} 1.5 \times 10^{12} M_{sun}$ (factor 2 uncertainty!)
- Rotation curve, density profile ... poorly characterised

Direction of motion

- Shape constraints:
 - not too flattened towards disk
 - possibly triaxial at large distances but based on just 1 stream:
 Sagittarius; very debated

but LMC's influence might be important! (Vera-Ciro & AH, 2013)

Granularity: Hundreds of thousands dark clumps if dark matter particle is cold

Narrow streams

Thin long streams better probes (more reliable tracers of underlying potential; Eyre & Binney 2009)

Internal velocity dispersions are few km/s

Koposov et al. 2009

- Halo granularity: need very accurate radial velocities
 - Distant streams preferred (d \sim 10 40 kpc) to isolate other effects
 - -> faint stars
 - Low surface brightness -> need to go as far down on RGB
 - Need to follow stream across large area on the sky
 - -> Wide-field, accurate RV, faint magnitudes, multiplex ~ 100

4most, MOONS, and beyond... also LSST for imaging

Some top questions for next decade

- 1. Which stars form and have been formed where?
- 2. What is the mass distribution throughout the Galaxy?
- 3. What is the spiral structure of our Galaxy?
- 4. How is mass cycled through the Galaxy?
- 5. How universal is the initial mass function?
- 6. What is the impact of metal-free stars on Galaxy evolution?
- 7. What is the merging history of the Galaxy?
- 8. Is the Galaxy consistent with Λ CDM?

Answers to those (and many more) questions...

- Gaia will revolutionise our knowledge of the Galaxy
- Complementary ground-based instruments (MOS) are much needed in the 2020s
 - For follow-up observations of particularly interesting samples selected from Gaia observations
 - For complementary observations of selected samples of stars fainter than the limit of the spectrograph on-board Gaia
- European leadership in Galactic research as regards astrometry (Hipparcos, Gaia), spectroscopy (multi-object spectro), and photometry (VISTA+VST) + unique European expertise in modelling.
- Give European astronomers a lead in the exploitation of the Gaia catalogue.

