

VLT Science Priorities

A personal view of the future Bruno Leibundgut

ESO in the 2020s | 19-22 January 2015

Overview

- Planning the VLT future
 - Maintaining leadership
 - Instruments now and next
 - Operations

(based on input from Alain Smette, Luca Pasquini and Michael Sterzik)

- VLT opportunities
- Adapting to the future
 - Instrumentation
 - > Operations

Note: La Silla is considered part of this discussion

Keep current instrumentation state of the art

> Messenger article by Frederic Gonté et al.

http://www.eso.org/sci/publications/messenger/archive/no.157-sep14/messenger-no157-17-25.pdf

- Implement strategy to keep instruments competitive
 - > repair defective instruments
 - > establish replacement plan for core capabilities
 - > plan for instrument upgrades
 - decommission instruments, which are no longer competitive
 - selective decommissioning of instrument modes, if required
- Instrument Development Plan
 - > Messenger article by Luca Pasquini et al.

http://www.eso.org/sci/publications/messenger/archive/no.154-dec13/messenger-no154-2-6.pdf

__ || 🐼 🛌 #= += || == || = || = 💷 💷 #= ## 🔛

Operations

- Messenger article by Francesca Primas et al. <u>http://www.eso.org/sci/publications/messenger/archive/no.158-dec14/messenger-no158-8-15.pdf</u>
- Internal investigation on the efficiency of operations and the scientific return by Michael Sterzik (2014)
- Current discussions on improving operations
 - scheduling
 - observations
 - data quality
 - archive

Vision for the next decade

The vision for the VLT builds on the strength of a long-term instrumentation programme and a modern operational model that enable the exploitation of four 8-m telescopes into the foreseeable future. The VLT remains the leading optical/infrared ground-based telescope system until the start of operations of the ELTs.

The VLTI will remain, even in the ELT and ALMA era, the European facility with the highest angular resolution.

Some thoughts

Over 40000 nights with 8 to 10m telescopes observed until today

➤ covers 20 years

> (goes back to a comment by Alvio Renzini)

- How to keep relevant?
 - > do something different
 - new capabilities
 - instrumentation
 - observing modes, e.g. rapid reaction
 - unique instrumentation
 - operational model \rightarrow coherent observing programmes

__ || 🐼 🛌 #= += || == || = || = 💷 💷 #= #= #= #=

VLT Opportunities

- Four 8m telescopes
 - ➢ flexibility
 - scientific throughput
 - 1200 observing nights/year
- Successful operational model
 - > expand existing model to allow new modes
 - high time resolution photometry and spectroscopy
 - faster turnaround (currently DDT)
 - closer interaction with user, e.g. remote observing
- Telescope system
 - > spatial resolution from 1 degree to 2 mas
 - \geq wavelength coverage from 320nm to 20 μ m
 - > spectral resolutions from a few to 100000

= || 🐼 |= += += || == || == 0 == 1# += 💥 🕒

VLT Opportunities

Time series

- \geq monitoring of sources over many time scales
 - HARPS, ESPRESSO and CRIRES+ for exo-planets
 - strong lenses over years
- Statistical astronomy
 - > complete samples
 - > surveys
- Powerful partner
 - > Optical counterpart to ALMA
 - Spectra for LSST sources
 - \succ complementarity to space missions
 - Rosetta, Gaia, Euclid, Plato, JWST

ႍ || 図 |_ := +- | | = || = || ... 🚺 💶 := !! !! ...

- Define Core Capabilities
 - ➢ poll provides guidelines
 - > always available at VLT
 - Joes not cover capabilities that can be done better with other facilities
 - E-ELT, 4m telescopes, space
 - competitive instrumentation
- Allow Experiments
 - > instrumentation for specific purpose
 - > remove requirement to be useful to larger community
 - explore risky instrument development for high-return science
 - > define 'expiration date' upfront

- Flexibility
 - use the fact that there are four 8m (and three 4m) telescopes
- Uniqueness
 - > VLTI

simultaneous coverage of large wavelength ranges

- e.g. observations of Comet Shoemaker-Levy 9
- Complementarity

spectral follow-up of imaging surveys

- > monitoring of special objects
- Complementarity to space missions
- Supplementarity

Supporting observations for other facilities ESO in the 2020s | 19-22 January 2015

- Changes for the community
 - > move towards 'coherent programmes'
 - obtain required observing time not in tranches, but sufficient to solve a scientific problem in one go
 - allow observing time over many years to monitor specific objects/events
 - obtain required wavelength coverage quickly and not over years
 - ➤ importance of archives
 - future astronomers will first work from archives (data discovery)
 - combination of archival data and new observations
 - statistical astronomy strongly depends on archives
 - ➢ flexibility
 - make use of the best opportunities offered
 - (corollary for observatories: users will go where they find the best service)

Operations

> what are the community needs?

• analyse poll results

> quick turnaround on unexpected events ("DDT")

 \geq allow massive surveys and individual observations

 \succ importance of the data products

- some data products are interesting for many
- others for only a few
- for some observational programmes the data product is the important unit and not the observing time
 - SDSS, surveys in general
 - provide coherent/consistent/uniform data products

 \succ importance of a data broker

- Complement and supplement
- Be open to more experiments
 - ➢ instruments
 - > science programmes
 - > make use of the flexibility
- Form an integral (central?) part in the ESO optical observing system
 - > E-ELT \iff VLT \iff 3.6m/NTT/VISTA
 - > complementarity with ALMA
 - \succ complementarity with other facilities
 - EUCLID, PLATO, JWST
 - SKA, CTA

- Make use of existing baseline
 - Iong-term programmes
 - open the decade time frame
 - e.g. HARPS/CRIRES+/ESPRESSO exo-planet observations
 - solar system projects
 - lens monitoring

> VLTI

- highest spatial resolution for decades
- complementary to spatial resolution of other facilities
 - ALMA, VLBI, SKA

- Follow up of the large samples
 - > optical identification/characterisation of objects found/ observed at other wavelengths
 - large tradition for X-ray and $\gamma\text{-ray}$ sources
 - ROSITA, XMM, Chandra, Integral, Fermi, eROSITA, ATHENA+
 - mm and sub-mm sources
 - Herschel, Gaia, ISO, Spitzer
 - radio sources
 - gravitational waves
 - differently selected sources
 - PLATO
 - > Archival searches

= !! 💿 🛌 :: +- !! = !! = !! = 🔟 🏊 :: 1

- How is the commitment for the observing time made?
 - \geq time scales
 - > funding
 - selection process
- Ground-space collaboration
 - Description of the second s user facilities
 - Surveys
 - EUCLID
 - PLATO
 - General users
 - JUICE