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Rotation lines

● Quantification of angular 
momentum. Example for a 
linear molecule: rotational 
ladder.

● H2 difficult to excite, does not 
emit in cold environments.

● Second most abundant 
molecule is CO.
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Rotation lines

IRC+10216

● Mm spectrum full of 
molecular lines.

● Already many are 
unidentified (U)

● Interferometer helps 
beating the spectral 
confusion by resolving 
out emission from 
different regions.
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http://www.astro.uni-koeln.de/cdms/molecules
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Why do we need sensitivity

● For studying faint objects:

● “normal” galaxies at cosmological distances

● “faint” protoplanetary disks

● For detecting faint lines

● Aminoacids for example

● But also because we want high angular resolution. Brightness 
sensitivity goes as 1/θ2.
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Sensitivity
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Sensitivity

● Lowering Tsys.
● Improving antenna efficiency

● Larger antennas
● Better antenna surfaces

● More antennas
● Larger bandwith
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Atmosphere
● Atmospheric lines: mainly H2O, O2, O3 in the mm/sub-mm range

Atmospheric model ATM (Pardo et al.)
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Atmospheric “windows”
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Radiative transfer

Radiative transfer equation

Or:
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Temperatures

Planck function: 

Rayleigh-Jeans

Brigthness temperature:

Optically thick emission: 

Optically thin emission 
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System temperature

● At mm wavelength, we are dominated by the atmosphere.

● 35K < Trec < 100 K

● Taking into account receiver rejection and refering to a perfect antenna 
outside atmosphere, one gets:

● Opacity correction allows to have sources on a scale proportional to their 
intensities (no more elevation dependant)
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Solution: get rid of water vapor

● Atmospheric scale height:

● Dry air: 8.4 km

● Water vapor: 2 km

● Solution: go to a dry high altitude site:

● ALMA: Chajnantor (5000 m)

● SMA: Mauna Kea (4000 m)

● NOEMA: (2500 m)
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Receiver

● High frequencies are not suited for a direct processing: needs a 
(frequency) down-conversion

● Cm: amplify then down-convert

● Mm: down-convert then amplify

● Technologies:

● SIS mixers: needs a 4 K cooling, 2 times 8 GHz bandwidth

● HEMT: direct amplification, 15 K sufficient. Bw up to 30%

● HEB: 4 K cooling, up to Thz frequencies, 4 GHz bandwidth



18

Sideband 

● DSB: both sidebands superimposed after 
downconversion

● SSB: one sideband is suppressed

● 2SB: sidebands are separated

● SSB have typically factor 2 lower system 
temperatures.

● In interferometry, phase control allows 
separation (walsh switching)/suppression 
(LO offseting) of signal from image sideband
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ALMA receivers
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ALMA Receivers

•Receiver Bands currently installed on all antennas:

- Band 3: 3 mm (84-116 GHz)
- Band 6: 1 mm (211-275 GHz)
- Band 7: 850 μm (275-370 GHz)
- Band 9: 450 μm (602-720 GHz)
- Band 4: 2 mm (125-163 GHz)                  
- Band 8: 650 μm (385-500 GHz)             
- Band 10: 350 μm band (787-950 GHz)  

•All receivers 8 GHz bandwidth x 2 polar. 
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NOEMA Receivers
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NOEMA receivers
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Sensitivity

● Lowering Tsys.
● Improving antenna efficiency

● Larger antennas
● Better antenna surfaces

● More antennas
● Larger bandwith
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Antenna efficiency

● Antenna efficiency (Jy/K) is the reverse of

● Solution: larger antenna

● But this is:

● Difficult

● Costly

● Reduce the field of view
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Aperture efficiency

● Ruze formula relates surface errors r.m.s. and aperture efficiency

● With                   one gets 50% efficiency. 

● ALMA, 350 microns, needs 25 micron surface rms.

● NOEMA, 850 microns, needs 50 micron surface rms.

● Actual numbers are slightly better.

● Antenna panels position adjusted using holographic measurements.
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Astro holography
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Sensitivity

● Lowering Tsys.
● Improving antenna efficiency

● Larger antennas
● Better antenna surfaces

● More antennas
● Larger bandwith
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Large bandwidth

● Large bandwidth allows to gain sensitivity for continuum data

● But lines have limited (by physics) linewidth

● However one can get through simultaneous observations of many 
lines at once (e.g. Spectral surveys). Share a common calibration.

● One gets a larger discovery space for redshift search

● Or for detecting new molecules

● This produces huge datasets (100's of GB).

● Integration time cannot go beyond reasonnable values

● After observing 1 day, one needs to observe 100 days to gain a 
factor of 10, 10 000 days to gain another of 10. This is almost 30 
years of observing time
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(some) Specificities of mm/sub-mm interferometry
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Tropospheric phase noise

● Water vapor along the line of 
sight adds a phase:

● And the air does not mix well
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Tropospheric phase noise

● Point source appears to move
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Tropospheric phase noise
● We lose integrated flux due to phase jitter
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Structure function of the atmosphere

PdBI (Bremer 2010)

Following Kolmogorov theory, phase rms increases up to an outer scale

ALMA (LBC)
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Radiometers

183 GHz

22 GHz

(Bremer et al. 1997)

PdBI: lower altitude, linearPdBI: lower altitude, linear
approximations possible,approximations possible,
Rayleigh scattering, no cooling Rayleigh scattering, no cooling 
needed…needed…

ALMA, SMA: high altitudeALMA, SMA: high altitude
(but needs to assume (but needs to assume 
Mie-scattering from water Mie-scattering from water 
Droplets, to cool Rx,…)Droplets, to cool Rx,…)

(Un)fortunately, water vapor has emission lines.
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ALMA radiometers
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Applying radiometric correction
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Quasars are variable

● Use  primary calibrators to set the 
flux scale

● Planets, but can be resolved 
out depending on frequency 
and configuration. Can have 
absorption line.

● Satellites

– Take care that it is not too 
close from planet

● Solar system small bodies, but 
need a good model.

● Radio-stars. At NOEMA, 
MWC349 is used as a flux 
reference
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Why flux scale matters

● Direct error on temperature or surface density.

● When observing with multi configurations:
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mm-submm observatories

• 1964: Haystack 37-m tel. (up to to λ=10/6mm)
• 1965: Green Bank 140ft telescope (λ>6mm)
• 1969: Kitt Peak 36’/12m telescope (λ>2/1mm)
• 1970: Effelsberg 100m telescope (λ>3mm)
• 1979: Berkley interferometer (-> BIMA)
• 1982: OVRO 
• 1982: Nobeyama 45m telescope (λ>2mm)
• 1984: IRAM 30m telescope (λ>0.8mm)
• 1985: Nobeyama interferometer
• 1988: CSO 10.4m telescope (λ>0.3mm)
• 1990: Plateau de Bure Interferometer (λ>0.8mm)
• 2000: GBT 105m telescope (λ>3mm)
• 2003: SMA
• 2004: APEX (λ>0.3mm)
• 2011: ALMA (λ>0.1mm), ES
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Mm/sub-mm interferometers

SMA
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NOEMA

ATCA

EVLA

ALMA

SMA

CARMA

PdBI
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ALMA
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Mm/sub-mm interferometers
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ALMA

Atacama Large Millimeter/Submillimeter Array

Europe (ESO) 

North America (USA, Canada, Taiwan) 

Eastern Asia (Japan, Taiwan, South Korea) 

Chile
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ALMA

Atacama Large Millimeter/Submillimeter Array

Europe (ESO) 

North America (USA, Canada, Taiwan) 

Eastern Asia (Japan, Taiwan, South Korea) 

Chile

• Main array: 50 x 12 m antennas
• ALMA Compact Array (ACA): 4 x 12m + 12 x 

7m 
• Frequency range: 30—900 GHz (0.3—10 mm)
• 16 km max. baseline
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ALMA antennas

NA and EA antennas EU antenna + transporter 
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ALMA Compact Array

Morita-array

•12 7-m antennas to observe the 
short spacings

•Not (yet) offered in stand-alone 
mode

Single-dish antennas

•4 12-m antennas used in single-
dish mode to observe the zero-
spacings
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Imaging

50 antennas, 1225 baselines (Goal = 45 antennas used)
Angular resolution λ/Β down to 40 mas (100 GHz), 5 mas (900 GHz)
28 (TBC) different antenna configurations, from compact to ~16 km

Short spacings: ACA observations + 4 single-dish antennas
Caution: not all projects can have ACA data!
ALMA imaging simulator in GILDAS and CASA
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ALMA Early Science

Cycle 0: deadline mid 2011 ; observations in 2012
Cycle 1: deadline mid 2012 ; observations in 2013-2014-2015
Cycle 2: deadline end of 2013: observations in 2014-2015
Cycle 3: deadline spring 2015

 1582 proposals

Pressure factor ~ 5—10

ALMA capabilities deployment
Now distinguish between standard and non-standard  modes

- ACA & SD, polarimetry, long baselines

Best 
effort 
basis
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Mm/sub-mm interferometers
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NOEMA

Northern Extended Millimeter Array

Extension of the IRAM Plateau de Bure interferometer

• Double the number of 15 m antennas from 6 to 12

• New receivers: increase of IF bandwidth from 8 GHz to 32 GHz

• New correlator (FPGA technology)

• Extension of the baselines from 0.8 to 1.6 km
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NOEMA

NOEMA Phase I (2017)

4 new antennas (7-8-9-10)

10 new receivers

12-antennas correlator

NOEMA Phase II (2019)

2 new antennas (11-12)

Baseline extension (1.6 km)

Band 4 (0.8 mm / 345 GHz)
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Antenna 7 inauguration 22 Sept. 2014
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January 2015

Antenna 8 

28 May 2015 
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NOEMA factsheet

Collecting area

Interferometry Short spacings

ALMA/ACA 5655 m2 914m2

NOEMA/30m 2121 m2 707m2

Bandwidth per polarization

PdBI 4 GHz

ALMA 2 x 4 GHz

NOEMA/30m 2 x 8 GHz

•  Line observations:           NOEMA rms < 3 ALMA rms
•  Continuum observations:    NOEMA rms < 2 ALMA rms
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NOEMA  features

• Correlator provides full continuum and (up to) 128 spec. windows

• Frequency plan + correlator mode optimized for frequency surveys

• Dual-band observations (with 2nd correlator) funded  by the MPG
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Timeline NOEMA

      2014              2015            2016            2017            2018

                 A7                A8               A9           A10          A11

                                          PolyFix
         Q3 2016

• A8: Q1 2016
• A9: Q1 2017
• A10: Q4 2017
• A11: Q3 2018
• A12: Q2 2019
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Radio allocation summary

● < 30 GHz:

● 1.3% primary exclusive for passive frequency use

● 1.2% primary shared allocations

● 0.5% secondary allocations

● 30 - 275 GHz:

● 16.8% primary exclusive for passive frequency use

● 38.3% primary shared allocations

● 5.1% secondary allocations

● > 275 GHz:

● No allocation yet

Tzioumis, IUCAF Spectrum management SS 2010.
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ITU Radio Regulations

Tzioumis, IUCAF Spectrum management SS 2010.
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WRC 15
● Agenda item 1.18

● To consider a primary allocation to the radiolocation service for 
automotive applications in the 77.5-78 GHz frequency band in 
accordance with Resolution 654 (WRC12)
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Observations of inner cavities in 
protoplanetary disks

● SMA observations of large cavities within protoplanetary disks. 
Possibly linked to planetary formation

Andrews et al. 2011
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A dust trap ?

● ALMA B9 observations of IRS48 (Herbig Ae 
star).

● Asymetry of the dust continuum 

● Possibly tracing dust trapping in a local pressure 
extremum

Van der Marel et al 2013, Science
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Molecular content

● ALMA Science verification 
CO observations of 
HD163296, a Herbig Ae star.

● Better resolution

● One sees not one, but two 
disks.

● Evidence for CO freeze-out 
onto grains ?
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CO snowline

● Snowline corresponds to the region below which water 
condensates

● Found using 13CO(2-1) by Qi et al 2011.

● DCO+ confined in a ring where temperature 19< T < 21 K. (no 
H

2
D+ if hotter, no CO if colder).

HD163296: Matthews et al. 2013
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New molecules in disks

● ALMA observation of MWC480

● Detection of CH
3
CN

Oberg et al. 2015, Nature
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Summary

● Mm/sub-mm interferometry is similar in many aspects with lower 
frequency interferometry

● You can use all the generic background of this school

● Smaller field of view, demanding on antenna performances.

● To increase mapping speed, use focal arrays ?

● Needs cryo-cooled receivers

● Some specificies:

● Atmosphere:

– Absorbing incident radiation and emitting (noise)

– Corrupting the astronomical phases

– But one can use radiometers
● Not so much RFI so far, but this may (will ?) change
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• Receivers are 2 polar x 2 sidebands x 8 GHz = 32 GHz/ant.

NOEMA receivers

NOEMA receivers

Band 1 3 mm 72-116  GHz

Band 2 2 mm 127-179 GHz

Band 3 1.3 mm 200-276 GHz

Band 4 0.8 mm 275-373  GHz

NOEMA Band 1 72-120 GHz 
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NOEMA correlator: PolyFix
New generation correlator based on FPGAs
Simultaneous continuum and line capabilities  
 Up to 150000 spectral channels

* With the constrain of having 16 windows in each of the 8 4 GHz-wide correlator units
** Number of windows may eventually be lower

Mode 1 : 
continuum  + lines

complete 16 GHz coverage in each polarization with 2 MHz channels 

AND

128 windows of 64 MHz (= 8 GHz coverage) with 62.5 kHz channels, each 
window tunable individually in steps of 64 MHz*

Mode 2 : 
survey  mode

complete 16 GHz coverage in each polarization with 250 kHz channels

Mode 3 : 
continuum + high-
resolution lines

same as mode 1, but with 64/32/16** windows of 64 MHz with 32/15/8 kHz 
channels
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NOEMA - summary

• NOEMA optimized for millimeter domain + intermediate angular 
resolution (compared to 30m/ALMA) 

• Post-ALMA technology
• 2x8GHz 2SB receivers
• FPGA-based correlator

• NOEMA vs ALMA: complementarity + unique features
• Northern hemisphere
• Optimized for mm/surveys/spectral surveys
• Easier access for French community

• Long term: equip antennas with multi-beams?
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