Tutorial T2: Data Inspection and Editing

Andy Biggs ALMA Regional Centre (ESO)

Preliminaries

- Move to a directory where you intend to work
 - Should have plenty of space
 - Dataset we'll be working on is 1.6 GB in size
- Download data, script and final list of flags
 - You've already done this, right...?
- Tutorial script contains skeletal CASA commands
 - Tips and hints as well
 - Goal is to complete script

Start CASA

- On the command line type:
 - casapy
- After a short while, this brings up:
 - An (i)Python prompt
 - The command-line interpreter is Python
 - All Python functionality is available in CASA
 - e.g. **range** command, numpy, loops, etc.
 - A logger window
 - Useful information is reported here by each task

Locate the data

- List directory from within CASA
 - Can use usual unix commands i.e. 'ls'
 - Often requires a '!' e.g. 'ldisplay plotants.png'
- The dataset we will use is all_avg.ms/
 - This is a directory!
 - .ms = Measurement Set (MS)
 - Contains tables and visibility data
 - Rarely have to worry about contents of MS
- CASA works directly on this MS
 - One doesn't load the data into CASA

Running CASA tasks (1)

- Set inputs individually
 - inp taskname
 - parameter1=x
 - parameter2=y
 - inp (to review)
 - **go**
- Parameter names can be tab-completed
 - Avoids typos and creation of useless variables
- tget taskname
 - Returns previous inputs (stored in .last file)

Running CASA tasks (2)

- Use a "one-liner"
 - taskname(parameter1=x,parameter2=y) or...
 - taskname(x,y) (if x and y are the first two inputs)
- Assemble one-liners in a python script
 - execfile('andys_script.py')
 - "Best practice"

View summary of the data

- Relevant task is **listobs**
- Summary information includes:
 - Which sources are included in the file
 - Spectral window properties
 - Bandwidth, central frequency, number of channels, correlations
 - Which antennas were in the array
 - Observation sequence
 - Which source with which spectral windows when?
- Spectral windows
 - Spectral windows are selected via a (0-based) index
 - Non-science spws often included e.g. ALMA

View antenna locations

- Relevant task is **plotants**
- Shows 2-D map of antenna positions
- Interesting information includes:
 - Size of the array
 - Antenna distribution
 - Are there any outliers?
- Often used to select reference antenna
 - Choose one with a large range of baseline lengths
 - For e-MERLIN, 'Mk2' is usually used

Viewing (*u*,*v*) coverage

- Relevant task is **plotuv**
- Shows projected baseline for each visibility
 - w coordinate is not shown (obviously)
- Complete coverage (no gaps) would be nice...
 - Incomplete coverage produces image sidelobes
 - The bigger the gaps, the bigger the sidelobes
- Wide-bandwidths help a lot
 - Separate track for each frequency point
 - $-(u, v) = B / \lambda$

Viewing data

- Relevant task is **plotms**
 - 2-D data plotter e.g. amplitude against frequency
- **plotms** is a very powerful task
 - Data can be selected on almost every property
 - Antenna, baseline, timerange, spw, correlation, ...
 - Data can be displayed in many different ways
 - >50 axis possibilities (time, frequency, phase, amplitude, ...)
- Very useful for:
 - Visualising data
 - Finding bad data

Flag versions

- Relevant task is **flagmanager**
- Two main modes of operation:
 - Save current list of flags to a named version
 - Do this regularly!
 - Replace the current flags with those from a named version
 - In the unlikely event that you screw up!
- Versions are stored in a **.flagversion** directory

Flagging data

- Some data normally needs to be deleted ("flagged")
- Typical reasons include:
 - An antenna is not working very well or at all
 - Problem may be time-variable
 - May only affect some spectral windows
 - Data taken whilst telescopes are off-source (slewing)
 - Many telescopes now flag this automatically
 - Edge channels of the spectral windows
 - Amplitude of these is usually lower
- Problems are usually <u>antenna</u>-based!
- Usually affect all correlations