Spatially Resolved Radio/mm Continuum Studies of Red Supergiants

Eamon O'Gorman

Chalmers University of Technology, Sweden

STEPS: ESO Garching, 6-10 July, 2015

W. Vlemmings, G. Harper, A. Richards, et al.

JVLA: Image courtesy of NRAO/AUI and NRAO

ALMA: Image courtesy of ESO

Betelgeuse: Extended atmosphere resolved

200

Betelgeuse with VLA + Pie Town

Observations spanning 2000,2001,2002,2003,2004 – 0.7, 1.3, 2, 6, 20 cm

Thermal continuum tomography

Thermal continuum tomography

Non-uniform brightness

Betelgeuse V band photometry

- Two prominent periods (radial velocity and photometry)
 - Secondary period ~2000 days
 - Primary period ~400 days
- Overlaps well with radio data
- Photometry and radio change together
- Pulsation/shocks: source of radio variability

• Radio continuum emission probes the extended atmosphere between 2 \rightarrow 6 R_{*}.

The global mean temperature of RSGs extended atmospheres are cool (< 3000 K)</p>

• Possible non-uniformities in brightness distribution (cooler features) but no evidence for radio hotspots between 2 \rightarrow 6 R_{*}.

Radio variability associated with pulsation/shocks

2)

VY Canis Majoris: Overview

	VY CMa	Alpha Ori
Spectral type	M5e Ia	M2 lab
<i>d</i> (pc)	1200 ± 100	197 ± 45
Angular diameter (mas)	11	41
dM/dt (M $_{\odot}$ yr ⁻¹)	3x10 ⁻⁴	3x10 ⁻⁶

VY Canis Majoris: Overview

	VY CMa	Alpha Ori
Spectral type	M5e Ia	M2 lab
<i>d</i> (pc)	1200 ± 100	197 ± 45
Angular diameter (mas)	11	41
dM/dt (M _o yr ⁻¹)	3x10 ⁻⁴	3x10 ⁻⁶

2)

Observations

- Science Verification, Observed August 2013, Released September 2014
- I6-20 antennas of the main array, Projected baselines ranging from 14m to 2.7 km
- 1.74 GHz line free continuum channels around 321 GHz (Band 7)
- 0.4 GHz at 658 GHz (Band 9)

Table 1. ALMA continuum observations of VY CMa.

v	Synthesized Beam	rms noise	MRS	Total S_{ν} (mJy)
(GHz)	("×", PA)	(mJy beam ⁻¹)	('')	
321	$0.229 \times 0.129, 28^{\circ}$	0.6	8.3	587
658	$0.110 \times 0.059, 30^{\circ}$	6	4.0	3017

Initial Results

Fig. 1. Continuum emission: 321-GHz colour scale, 658-GHz contours at $(-1,1,2,4,8,16) \times 10$ mJy beam⁻¹. Synthesized beams shown at lower left for 321 GHz (white), 658 GHz (blue). (0, 0) at R.A. 07 22 58.33454 Dec. -25 46 03.3275 (J2000). C marks the continuum peak. **VY** is identified as the star, at the centre of water maser expansion.

Richards et al., 2014

Initial Results

Fig. 1. Continuum emission: 321-GHz colour scale, 658-GHz contours at $(-1,1,2,4,8,16) \times 10$ mJy beam⁻¹. Synthesized beams shown at lower left for 321 GHz (white), 658 GHz (blue). (0, 0) at R.A. 07 22 58.33454 Dec. -25 46 03.3275 (J2000). C marks the continuum peak. **VY** is identified as the star, at the centre of water maser expansion.

Richards et al., 2014

ALMA vs HST

Spectral Index

• VY CMa: $\alpha = 2.0 \rightarrow 3.0$

Spectral Index

Dust Properties

	Т _d (К)	${\sf M}_{\sf d}$ (${\sf M}_{\circ}$)
С	< 450 (T _d =200 K)	> 3 x 10 ⁻⁴
VY	1000	3 x 10 ⁻⁵

• At least 17% of dust mass in clumps ejected within a more quiescent stellar wind

<u>C component:</u>

Low temperature and high optical depth \rightarrow low excitation and/or freeze-out of thermal molecular lines

VY CMa: conclusions from ALMA

- Most detailed view of thermal dust emission around a RSG
- Continuum emission allows derivation of dust properties (temperature, mass, density)
- Directed dust mass-loss over a few decades. Localized but much more stable over time.

VY CMa: conclusions from ALMA

- Most detailed view of thermal dust emission around a RSG
- Continuum emission allows derivation of dust properties (temperature, mass, density)
- Directed dust mass-loss over a few decades. Localized but much more stable over time.

Spatially resolved continuum observations with ALMA, JVLA, e-MERLIN are powerful tools to study evolved stars.