Stellar End Products:
Grand Overview

@ The impact of stellar evolution

® Mass loss and Initial-final mass relations
® Angular momentum and binary evolution

@® Environment

@ Presolar grains




Death by mass loss
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mass &l the first helium shell fash for the £ = 0.016 calculations, Observa
tional points are tlaken from Weldemann (1987), and references therein, Annu—
lation of the data points is similar to that presented in Fig, 1 of Weidemann &
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@ Between birth and death,
stars lose 40%-80% of

their mass

® Mostly through
catastrophy winds

@ Occurs during the red
(super) giant phase of
evolution




Reflecting on the past

Egg Nebula - CRL 2688 HST - WFPC2F

PRC96-03 - ST Scl OPO - January 16, 1996
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Importance of the stellar end phase

Stellar remnants Astrophysics

® White dwartfs, SNe, @ Convection; Mass
degenerate binary loss
systems

® Hydrodynamics and

Galaxy evolution Jet formation

, Astronomical Tracers
@ Baryonic and

chemical evolution @ Abundances;
Distances; Kinematics

@ Dust

Planetary evolution

Cosmology
- @G alaxy ages
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The AGB/SN division
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From Doherty et al. (2015)
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Mass loss through stellar winds

Dominant source of mass return to the ISM
Main questions
® Wind parameters (Mdot, Vexp, composition)

@ Timing and evolution of the wind
® Sets initial — final mass relations, yields

@ Driving mechanisms

@ Shaping and structure

® Angular momentum, magnetic fields, gravity




Mass loss evidence

10 20 a0

@ Dust excess 1n stars
IRAS, ..
@ Molecular emission

& OH masers
&CO

® Reflection nebulae
SRZ Sgr
@ Absorption lines



Classical OH/IR stars

® Discovered 1968

@ Optically obscured

@ Long periods (2000
days)

® Baud (1981) ~ 20
stars with F>10Jy in
northern plane

® High mass AGB

stars

Spectra of the 1612 MHz hydroxyl maser
from an OH/IR star
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Stellar death rate
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® Y ounger populations have higher death rates

® And longer lasting mass loss

@ Samples can be biassed towards higher masses




Mass loss formalisms

Reimer’s law (1975)
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Initial final mass relations
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mass los relations

®IFMR depends ® Scaling factors needed
entirely on chosen ® Bloecker has far too
mass loss formula high mass loss

@ All relations predict Z @ VW93 is simplest, and
dependence works, but too good to

®But eta is constant be true?

@ All predict higher ®Requires P~500
Mdot for C stars days

® Relations are poorly

calibrated




VW93 Pulsation formalism
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@ Mdot-period relation @® New mass loss rates
from VW93 from de Beck et al.

2010

@ Yield shallower
relation?




@ Glass et al. 2009
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@® Dusty mass loss
starts at P=65 days
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Nearby red giants
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@ Infrared excess seen
when [.>1000 Lsun

@ Or P>70 days




RGB/AGB pulsation amplitudes
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Driving the wind

@ Chromospheric wind Dust issues
® Warmer stars @ Silicate dust lacks
® Lower luminosity necessary opacity

® Pulsation driven wind (Woitke)

® Mira variables
® Radiation pressure on @ Dust may aftect

dust expansion velocity
STP-AGRB more than mass loss
rate

®Tip RGB?




Scattering wind

Silicate absorption

@ Iron rich grains: too
hot to exist close to
the star

@ [ron poor grains:
don't absorb

Neither can drive a
wind

Scattering
® Hoefner wind

@ Requires large
grains (~micron)

@ Confirmed by
SAMPOL/VLT

Figure 1
riza tamn W




RGB mass loss

I — Groenewegen 2012, McDonald et
al 2012

@ Dominates over AGB for
M<1Msun

Log (masgg loss)
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BT L L R + 4
2.5 L 3 . 3.5 @ Strongest near tip of RGB
og

® Intermittent dusty mass
loss? Unlikely.

3 | ®Vexp is crucial. DUSTY
T gives far too small values.
Why? (Groenewegen 2014)
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Expansion velocity

@Top: RGB star
(Groenewegen 2014)

Ton (K
D 5v1077 .01

@ Bottom: Low-Z star
(McDonald, in prep)
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Expansmn velocity at low Z

e | ® Carbon stars:
: J evidence for lower
| Vexp

; | @ Groenewegen et al. 1997
L T @ Lagadec et al. 2010

@ Oxygen stars: No
significant relation?

@ Marshall et al. 2004

@ Wood et al. 1998

]
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— Fig. 13. The stellar wind expansion velocity plotted agai lp eriod. The

_ . expansion velocities for the Galactic Center OH/IR stars g n by
LWHM (open squares) and by Sjouwerman{1997) (open tri gl s).
Also shown are local Miras (filled tri gl 5), OH/IR stars near the
Galactic plane (plus siens). OH/IR stars in the Galactic bulee (ﬁll d




Wind structure:
clumping

@ W ater masers found
1in Miras, SR, RSG

@ Masers spots
measure size of
clumps

@ Clump size ~ stellar
radius
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Fig. 62. Water maser cloud radius R, as a function of R, . The different
epochs are shown by different symbol shapes as in Fig. 44. RSG, Miras
and SRb are shown by large, hollow and small symbols, respectively.

The solid and dashed lines show the slope of an error-weighted fit to the
relationship between R, and R, and the dispersion in the relationship.

-i - =
\/——/\17,/_]



Episodic winds

@ Supergiants tend to
show multiple shells

S HR excursions

® AGB stars show

- rings

025 ®Thermal pulse
. f; related

10.15 é .

o : @® Where is the border

line?




Wind shaping




Shaping mechanisms

® Angular momentum Specific
or magnetic fields @ Interacting winds
Closely related! ®Ejected at different
times

@ Stronger shaping for
low mass objects ® Or by different stars

@ Jet shaping

® Suggest determinant:
angular momentum ® Accretion disk
per ejecta mass around companion

Huarte-Espinoza et
al. 2012
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Old view:

® AGB winds
spherical

® Asymmetry forms
during post-AGB

New view
@1t is all AGB bias



Binary interactions
R Aqr - Sphere




Angular momentum
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decays as P ~ t°
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Fig. 3. Angular velocity of the radiative core (dashed lines) and of the convective envelope (solid lines) is shown as a
function of time for fast (blue), median (green), and slow (red) rotator models. The angular velocity is scaled to the
angular velocity of the present Sun. The blue, red, and green tilted squares and associated error bars represent the 90
percentile, the 25" percentile, and the median, respectively, of the rotational distributions of solar-type stars in star
forming regions and young open clusters obtained with the rejection sampling method (see text). The open circle is the
angular velocity of the present Sun and the dashed black line illustrates the Skumanich relationship, € oc £1/2,

® High-mass stars
retain more angular
momentum

Gallier & Bouvier
2013




Angular momentum

® Higher mass stars ® L.ow mass stars
® Stellar rotation ® Orbital motion
® Binary orbit only

®'Cold storage'




High mass binaries

®WR104

@ 8-month binary
period

® Dust formation
occurs in wind
collision region

@ Start of spiral




[.ow mass binaries

@ Distant companions: evolve as two single stars

@ Closer companions:

@ Enhanced mass loss; Mass transfer

Symbiotic stars

® Closest: common envelope, interacting
binaries

Novae, CVs, ..
@ Challenge 1: find the AGB binaries
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Challenge 2: Connect the dots

® Many binary L ooy
systems known in = .. = e
different phases of -
evolution

@ But evolutionary N e B D s B
sequences are far ’ Cemagy 4

from clear




Environment 400 200 o 200

200

Wind interacts with
environment

@®1ISM sweep up g8
® 1S magnetic fields 5 s

@IS radiation fields Selgzt al 2006

Van Matrle et al. 2014




Example: PN alignment

PNe: All Types - Whole Area
90

Bipolar PNe - Whole Area
L

® Bulge PNe show
alignment of major
axes

@ Explained by
interstellar magnetic

fields stronger then
100 microG

Rees & Zijlstra 2013

Falceta-Goncalves &
Monteiro 2014




Interstellar radiation fields

® Globular clusters @ Open clusters
® Hot post-AGB ® O,B stars ionize the
stars/WDs ionize AGB winds
\(/:vgld and dissociate Half of massive
OH/IR stars will be
McDonald & Zijlstra in such clusters
2015

Zhukovska et al. Subm.




Presolar grains

@ Inclusions in
meteorites

Pre-date the solar
system

@ Direct measurement
of isotopic
abundances in stellar
ejecta

= Mainstream ~93% o A+B grains 4-5%

v Cgrains
¢ Y grains

A Xgrains ~1%
~1% ® Z grains ~1%
®m Nova grains

104:-




Presolar grains

@ Constrain nuclear
reaction rates

10° e _
| arat
10 g @ Dredge up
= 1% e = @ Exotic dust
¥ ol producers
ol © Novae, R Cor
f Bor stars
TR (Karakas, 2015)
12C.-"'13f:
® Mystery of A/B

grains

>




Big needs and questions

Data Can we

@® Distances and @ get accurate mass
abundances! loss formalisms?

® A mass loss tracer ® Explain the magic
which works 13C pocket?

® 3d wind structure ® Understand dust

® AGB binaries formation? (Iron !)

@ Model binary

interactions and jet
____ formation?




Observing the future

@® Wealth of new facilities

®ESO VLT & ELT
SALMA

SGAIA

SJWST

®LSST, TESS & PLATO

® Require projects which are well designed
‘ and prepared

—



What to do

® Need for surveys

® Large teams, integrated science

® Complementing individual observing
projects

® Piggyback science

®e.g. Asteroseismology from Planet finders




Finally

@ Late stages of stellar evolution are becoming
frontier science

@ Mass loss is crucial to many areas, from the
evolution of the Universe to the formation of
habitable planets

@® We have a good understanding of the problems

@ Learn from related areas, and be ambitious
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