# Origins of clumps & asymmetries

#### **Anita Richards**



**EUROPEAN ARC** 

ALMA Regional Centre || UK

UK ALMA Regional Centre JBCA, University of Manchester with thanks to Assaf, Baudry, Decin, Etoka, Gray, Humphreys, O'Gorman, Vlemmings, Wittkowski & many others





#### Origins of clumps & asymmetries More observation than explanation in a very restricted sub-sample...

- AGB and RSG
- Solitary/mildly-interacting binary
  - Remote, or potential low-mass companion
- (mostly) radio interferometry
  - Try to understand small-scale wind properties
    - Less averaging of physical conditions
- Small contribution to big questions
  - How is mass lost from the stellar surface?
  - Do dust and molecules survive into the ISM?
- Maser and other high-resolution radio interferometry
  - Mostly O-rich stars no room here for HCN masers

#### How does wind get beyond 5 $R_*$ ?

- Ample evidence for radial, dust-driven wind once dust is fully(?) formed at >(5-20)  $R_*$ 
  - How does O-rich wind get as far as forming dust?
- Shocks propagate in sub-photospheric layers Jorissen (even in Miras: Belova+'14)
  - <5-10 km/s outside photosphere (*Reid & Menten*'97)
    - Average SiO maser max.  $V_{exp}$  7 km/s (*Kim*+'14)
- Other forces as well as pulsations needed
  - Large grains? Scattering? (Norris+'12)
  - Hoefner, Bladh, Scicluna presentations
  - Poster van de Sande
- $<5R_*$  pulsation dominated, SiO maser outflow & infall
- $>5R_*$  H<sub>2</sub>O 22 GHz, OH maser accelerating mass loss

#### Wind acceleration

- Gradual acceleration over 10's 100's  $R_*$ 
  - Maser shell limit velocities (and CO) v. distance to star

• Four AGB stars (also in RSG), *Richards*+'12



# Inside r<sub>d</sub>: SiO ballistic? Magnetic driving?

1240

1220

(pixels) 1500

760

Cam

- R Cas shows central redshifted emission
  - Must be near-side infall
- TX Cam maser proper motions non-radial, follow polarization vectors
  - Dragged or dragging (Hartquist+96)?
- But ballistic trajectories fitted for IK Tau



#### Escape velocity reached in 22 GHz shell



#### Productive cool stars

- Much C, N, F, neutron-capture elements, half of all elements heaver than Fe (*Karakas*)
   See previous talks for latest numbers
- Up to 90% Galactic dust from AGB/RSG
  - e.g. *Gehrz*'89, Posters e.g. *Treja-Cruz* 
    - Does it survive ISM sputtering, UV etc.?



presolar.wustl.edu

- Some AGB inclusions in meteorites (*Zijlstra*)
- Dust protected by clumps (and later icing)?

Cold gas globules eroded but surviving

Helix Nebula HST

NGC 7027 MERLIN HST detects 10<sup>4</sup>K gas, but dark shadows show lots of dust

Radio emission from hot electrons in diffuse gas. Dust is transparent at cm  $\lambda$ 

## Measuring masers

- 22-GHz channel maps
  - Smoothed for display
- Fit 2-D Gaussian components
  - Multiple spots per (full resolution) channel
  - MERLIN 10 mas beam
  - Position accuracy = (beam size)/(signal to noise ratio)
    - $\sigma_{_{pos}}$  <0.1 mas for a 10 Jy maser



#### Cloud measurements



- *R*<sub>cRSG</sub> 10-15 AU
- Beaming angle  $\sim (0.5 s/R_c)^2$



#### Shrinking of brighter (22 GHz) masers

- Component size s
- Intensity I
- (mJy) 00 1000 -lux density Brighter spots are <u>o</u> 1000 smaller 8 -55 -50 -35 -60-45 -40



"Amplification-bounded" beaming from ~spherical clouds

 $V_{LSR}$  (km s<sup>-1</sup>)



1999

1994

-25

-30

# But *sometimes* brighter=bigger

 Spectral peak components swell



- Shock 'into page'
  - Maser propagates perpendicular to shock
  - Pump photons escape orthogonally
  - Entire surface emission
     is amplified
  - "Matter
    - bounded"

#### beaming

Apparent size
 ~ actual size



# H<sub>2</sub>O masers provide shock diagnositic

- Brighter masers have smaller beamed size?

# Smoothly expanding spheres

- Thick, well-filled CSE
- Brightest emission often ~cloud size?
  - Shocked slabs
    - Thinner-shelled Miras
    - Extreme variability
    - Deep stellar periods
    - Some OH flares



- Pulsation(?) shocks affect just <sup>Amplification bounded</sup> some, inner 22-GHz masers?
  - But Imai+'03 found a shockaccelerated outer 22-GHz clump

*Richards Elitzur & Yates 2010 Elitzur Hollenbach & McKee 1992* 

Matter bounded

# Cloud density

- 22 GHz H<sub>2</sub>O masers start at r<sub>i</sub>
  - 40-70 AU RSG, 5-15 AU AGB
  - Collision rate < masing rate</li>
     (Cooke & Elitzur 85, Bowers+93,
     Yates & Cohen 94)
    - Quenching density ~5x10<sup>15</sup>m<sup>-3</sup>
- Clouds ≥45x average (e.g. CO) wind density
  - Filling factor ≤1%
  - Up to 90% mass loss concentrated in clouds
  - 2-6 clouds/stellar period
    - (Richards+'13)



# Cloud survival, maser variability

 Specific RSG masers can be tracked for ≥5 yr

Right Ascension offset (mas)



S Per

#### Masers blink, clouds survive



- 22-GHz shell crossing times
  - Decade(s) for AGB stars
  - Up to century for RSG
- 40 yrs of Pushchino spectra
  - Peaks vanish, some reappear between imaging epochs
  - Dispersed clouds couldn't reform
    - Clouds survive as clumps
    - Masers turn on and off
      - Turbulence/beaming?
      - Shocks/excitation?
    - Clumps medium friction?
  - CO shells at 1000's R\* suggest clumping on consistent scales
    - Bergman+'93, Olofsson+'96,'10

#### Brightness of whole shell varies

 $10^{4}$ 

10<sup>3</sup>

100

150

200

250

Separation from star r (AU)





5 yr

300

350

#### **Proper motions**

- RT Vir ~133 pc (vanLeeuwen'07)
  - Proper motions consistent with Doppler velocity
- Accelerating, radial expansion
  - No rotation (*Richards*+13; *Imai*+03)

offset

7 AGB/RSG similar (not VY CMa)





#### RT Vir 22 GHz and OH masers



- 22-GHz H<sub>2</sub>O circles, inner 25 AU
- OH mainlines (position error bars)
  - Elongation orthogonal to 22-GHz
  - Inner OH interleaves water masers
- OH Zeeman splitting to be analysed
   B<sub>H20</sub> 140-180 mG
  - B<sub>H20</sub><sup>-140-180 mG (*Leal-Ferreira+'13*)</sup>

#### OH mainlines interleave water clumps



- OH 1665/1667 MHz interleaves 22 GHz H<sub>2</sub>O
  - No excited-state OH
    - *T*<sub>OH</sub> ≲500 K
    - *T*<sub>H20</sub> ≲1000 K
    - *n*<sub>OH</sub> ≲10<sup>14</sup> m<sup>-3</sup>
    - *n*<sub>H20</sub> ≲5 10<sup>15</sup> m<sup>-3</sup>
- OH mainlines from lowerdensity inter-clump gas
  - Richards, Etoka, Gray, Masheder, van Langevelde, Yates 2014
- OH 1612-MHz in outer shell where it should be
  - Richards+'99

#### RSG overlapping maser shells

- Assume radial, symmetric acceleration for each of H<sub>2</sub>O and OH
- Solve for 3D structure
  Have a look from the side
- Still overlap





### U Ori – AGB overlap

- Fairly well-filled, stable OH mainline shell
- Trace of inner OH mainline emission



# Asymmetry or poor filling?

- U Ori 22 GHz H<sub>2</sub>O shell shape changes over 7 years
  - Masers dis/ appear in different regions
  - Survive ≤1 yr

#### Peaks at different position angles

- But similar velocities and angular separations from centre of expansion





#### Maser cloud size depends on star size



\* or are they? Can wind instability scales depend on size of CSE?

- See Gray et al. in prep

# How is matter ejected from star?

• Assuming radial expansion,  $H_2O$ clump birth radii 5-10%  $R_*$ 

 Comparable to convection models and observed starspots

Chiavassa+'10, Haubois+'09, Kervella+'09,'11





- e-MERLIN observations 2012, 2015a (2015b to come)
  - 2012 reprocessed missing receiver axis offset, sorry!
- 2015 PI O'Gorman, see next talk
  - Preliminary results here, need checking/refining!
- Photosphere  $R_{*2\mu m}$  21 mas at 2  $\mu m$  (*Ohnaka*+'11)
  - 4.3 au at 197 pc (*Harper+'08*)
    - Larger at radio wavelengths
- e-MERLIN: 0.5 GHz b/w around 5.75 GHz ( $\lambda$  5.2 cm)
  - $1\sigma$  noise ~16  $\mu Jy$  in 78x58 mas^2 beam
    - Similar to Kervella 2015 VLTI resolution

DECLINATI

- Taper to 180-mas resolution
  - Fit elliptical 2D Gaussian
    - Contours residuals (-1,1,2)x63  $\mu$ Jy/bm





- 2012: 1.448 mJy, 204x195 mas<sup>2</sup>
  - Tb 1925 K
- 2015: 1.604 mJy, 210x201 mas<sup>2</sup>
   Tb 2010 K
  - ~5% flux scale uncertainty

Contours (-1,1,2,4...)x63 µJy/bm 0.0 0.5 1.0 1.5 2.0 2012 07 24 25.7 25.6 25.5 Declination (J2000) 25.4 25.3 25.2 25.1 25.0 10.34 05 55 10.35 10.33 10.32 10.31 10.30

Right Ascension (J2000)



- - - marks low-res peak

- Full resolution, fit Gaussian
  - Residuals (-2,-1,1,2)x63 μJy/bm
    - +ive & -ive (O'Gorman+'15)





- 2012: Central residuals sum ~0
   ≤±8% smoothed (180-mas) flux
- 2015: Residuals sum ~+40%
   total flux
   ≤ ±10% smoothed flux

# Betelguese spots and mass loss

 e-MERLIN results at 180-mas resolution broadly consistent with VLA (O'Gorman+'15)

-  $R_{5cm} \sim 5R_{*2\mu m}$ ;  $T_b \sim 2000 \text{ K}$ 

- 6-8 hot & cool spots  $\leq \pm 10\%$  (100-200K)
  - Unresolved by  $\sim$ 60 mas beam, combined flux small
    - Explains lack of 1.6 GHz excess in unresolved VLA disc?
- Betelguese  $\dot{M} \sim 10^{-6} M_{\odot}/yr$  (*Le Bertre*+'12)
  - Strong silicate dust *was* only seen at >20  $R_*$ 
    - *Skinner*+'88, *Danchi*+'94 etc.
  - Episodic mass loss? e.g. multiple dust & CO shells
    - *Harper; Le Bertre+'12; Decin+'12,O'Gorman+'12*
  - Possible to have an *irregular*, dust-driven wind?
  - Currently dust-forming! (Kervella)

## Mira starspot

- ALMA 230 GHz, 30-mas resolution (Vlemmings+'15)
  - Mira A disc  $R_* \sim 2$  au,  $T_b 2500$  K, with  $10^4$  K hotspot



- Same ALMA SV data processed by *Matthews*+'15
  - Similar but not identical disc (contours) and residuals



# ALMA Science Verification: VY CMa

- 2<sup>nd</sup> peak VY marks maser 0.9 centre of expansion 0.8
  - Dense Clump cooler
- At least 17% dust concentrated in clumps
- N, SE extensions show wind asymmetries must have persisted for decades
  - $\gg$ convection cell life
- All species highly asymmetric incl. thermal
  - de Beck+'15,Decin+15, Humphreys talk



# Maser predictions

- Density, radiation field, dV, 140 as well as  $E_U$ , determines 120 maser excitation  $\Im$  100
- 22 GHz wide span
  - Quenched at high densities
  - Fades <~400 K</li>
- 325 GHz boundaries at lower densities
  - Extends to cooler T
- 321 GHz narrower range
- 658 GHz hot, dense environment
  - Similar to SiO masers





# Spatial distribution



- Different maser
   lines separate
   on scales of
   tens au
  - Could be at similar radii in different clumps and inter-clump gas?
    - Hot/dense
       v.
       cool/diffuse

• 658 GHz starts inside dust formation zone

- But at larger radii than SiO, extends much further

#### VY CMa mixed-up masers



Velocity (Vlsr) (km/s)

# Shocks?

- 658- and 321-**GHz** masers appear to curve round **'C'** 
  - Wind colliding with dense clump?
- Can shock 0 heating  $\bigcirc$ explain -200 extended high-excitation-400 lines? 400 600 200



#### Maser lessons for VY CMa

- Dust well-established by 60-100 au (Danchi+'96, Decin+'06)
- 658-GHz masers inside and outside inner dust rim  $r_{\rm d}$ 
  - Could proper motions show change in velocity field at  $r_{d}$ ?
- 321, 22, 325 GHz masers overlap but lowest  $E_{\rm U}$  extends furthest
  - Clump sizes ~50% scatter but 658 GHz smallest, 325 GHz largest
    - All in clumps? Some inter-clump gas?

| Line (GHz)   | <b>658</b> | <u>321</u> | 22  | 325 |
|--------------|------------|------------|-----|-----|
| Rclump (au)  | 10         |            | 12  | 24  |
| ∆Vtot (km/s) | 1.9        |            | 2.8 | 2.7 |

- 22-GHz Doppler & proper motions show radial acceleration
  - 'Ears' (& thermal lines, *Decin*+'06)
     suggest biconical outflow+disc
    - But also very irregular kinematics



#### ALMA masers

- 44  $H_2O$  maser lines accessible to ALMA (+ 4 B2, B5)
  - 19 detected (some unconfirmed), 5 mapped
    - $E_{\rm U}$  200 6000 K, collisional & radiative pumping
      - Models (*Gray'12 & in prep & refs*) show they need distinct combinations of temperature, number density, H<sub>2</sub>O fraction, velocity & radiation fields.
  - + e-MERLIN 22 GHz
- Image in better-behaved VX Sgr
  - Use  $V_{LSR}$  to deduce *z* position
  - Refine models
    - Resource for au-scale physics in any wet environment



# Summary I: Spotty stars, clumpy winds

- Stellar hot/cool spots related to wind clumps?
  - Cool spots enhance molecule/dust formation?
  - Hot spots related to magnetic buoyancy?
- agnetic buoyancy?

25.7

- Few clumps per stellar period contain 30-90% mass lost
  - Convection (Jorissen) chemically distinct? Poster Gobrecht
- Wind clumps overdense, overheated, must be overpressurised
  - Yet survive >> sonic turbulence timescale

– Magnetic confinement?

- Mild asymmetry (except extreme RSG), no rotation
- Whatever the cause, clumps/asymmetry protect dust in ISM?

#### II Why astronomers need water

