Radio/mm/sub-mm Observations of AGB and RSG stars

Hans Olofsson Dept. of Earth and Space Sciences, Chalmers

Outline

I will cover the following topics:

The central stars

Chemistry:

Spectral scans Source comparisons More elaborate modelling H₂O in CSEs (not covered) Large samples

lsotopes

Mass loss:

Mass-loss rate M_{lost} and large-scale structure

Polarisation (not covered) Binarity (not covered) I will summarise the most recent findings in those areas where I think we will make huge progress through the use of ALMA.

Masers will be covered elsewhere

The central stars

How do they look like?

We are approaching the time when ALMA can resolve structures in the (radio) disks of red giants and supergiants.

This will put important constraints on the modelling of the stars themselves and the initial conditions for mass loss.

Do they look like this?

Important that the models produce radio images to compare observations with !!

Some simple estimates

Expected flux densities:

$$S_* \approx 1 \left[\frac{\nu}{115 \,\mathrm{GHz}} \right]^2 \left[\frac{2000 \,\mathrm{K}}{T} \right]^3 \left[\frac{L}{10^4 \,L_\odot} \right] \left[\frac{1 \,\mathrm{kpc}}{D} \right]^2 \,\mathrm{mJy}$$

 $S_* pprox 80 \, {
m mJy}$ for 230 GHz, 4000 L $_{\odot}$, 100 pc $S_* pprox 20 \, {
m mJy}$ for 230 GHz, 10⁵ L $_{\odot}$, 1 kpc

Expected sizes:

$$\theta_* \approx 8 \left[\frac{L}{10^4 L_{\odot}} \right]^{0.5} \left[\frac{2000 \,\mathrm{K}}{T} \right]^2 \left[\frac{1 \,\mathrm{kpc}}{D} \right] \,\mathrm{mas}$$

 $\theta_* pprox 50 \,\, {
m mas}$ for 4000 L $_{\odot}$, 100 pc

 $heta_* pprox 25 \ {
m mas}$ for I0⁵ L $_{\odot}$, I kpc

Pioneering work on the radio photospheres

- Reid & Menten, ApJ 476, 327, 1997;
 W Hya
- Reid & Menten, ApJ 671, 2068, 2007;
 o Ceti, R Leo, and W Hya
- Lim et al., Nature 392, 575, 1998
 α Ori

Sizes match well with the capacity of ALMA !!

 \approx 80 mas at 22 GHz

 \approx 55 mas at 43 GHz

 \approx 90 mas at 43 GHz

Richards et al., MNRAS 432, L61, 2013:

- α Ori, \approx 230 mas at 6 GHz

Menten et al., A&A 543, A73, 2012: - CW Leo, ≈80 mas at 43 GHz

Radio photosphere at 43 GHz

Stellar photosphere

 $R* \approx 3.8 \, AU \text{ from estimated L} \\ \text{and assumed } T_{\text{eff}}$

Vlemmings et al., A&A 577, L4, 2015:

- o Ceti, \approx 40 mas (R* \approx 1.8 AU) at 94 and 228 GHz
- A bright hotspot $T_b \sim 10000$ K, on the stellar disk of Mira A

Chemistry: overview

Table 1: Molecules detected in AGB CSEs					
2-atoms:	AlCl AlF C ₂ CO CN	CP CS ClH FH KCl	NaCl OH PN SiC SiN	SiO SiS SO	Number of detected molecules in AGB-CSEs:
3-atoms:	$\begin{array}{c} \mathrm{AlNC} \\ \mathrm{C}_3 \\ \mathrm{C}_2 \mathrm{H} \\ \mathrm{C}_2 \mathrm{S} \\ \mathrm{CO}_2 \end{array}$	FeCN HCN HCP H ₂ O H ₂ S	HNC KCN MgCN MgNC NaCN	SiC ₂ SiCN SiCSi SiNC SO ₂	85 + 3? Number of detected
4-atoms:	ℓ -C ₃ H C ₃ N C ₃ O C ₃ S	C_2H_2 HC_2N H_2CO H_2CS	HMgNC MgC ₂ H (?) NC ₂ P (?) NH ₃	PH_3 SiC_3	molecules in RSG-CSEs: ≈ 25
5-atoms:	$egin{array}{c} { m C}_5 \ { m C}_4 { m H} \ { m C}_4 { m Si} \end{array}$	$c-C_3H_2$ CH_2CN CH_4	${ m CH_2NH} { m HC_3N} { m HC_2NC}$	$egin{array}{c} \mathrm{H}_2\mathrm{C}_3 \ \mathrm{HNC}_3 \ \mathrm{SiH}_4 \end{array}$	To a first approximation
6-atoms:	${f C_5 H} {f C_5 N}$	$egin{array}{c} { m C}_5 { m S} \ { m C}_2 { m H}_4 \end{array}$	$ m CH_3CN$ $ m HC_4N$	H_2C_4 SiH ₃ CN (?)	the RSGs being O-rich
\geq 7-atoms:	$egin{array}{c} { m C}_6 { m H} \\ { m C}_7 { m H} \\ { m C}_8 { m H} \end{array}$	CH_2CHCN CH_3CCH HC_5N	$\mathrm{HC_{7}N}$ $\mathrm{HC_{9}N}$ $\mathrm{H_{2}C_{6}}$		
Ions:	${ m C_4H^-}\ { m CN^-}$	C_6H^- C_3N^-	${ m C_8H^-} { m C_5N^-}$	$\rm HCO^+$	

(Imaging) Spectral Scans

The importance of unbiased spectral scans for understanding circumstellar chemistry must be emphasized !!

Figure 2. Overview of all the detected lines. Top and bottom panels show the same spectrum with different intensity scales.

Gong et al. (2015) A&A 574, A56: Effelsberg 100m telescope spectral scan of CW Leo, 17.8 - 26.3 GHz. 78 lines were detected; 12 are unassigned.

- IRC +10216
- TMC-1
- Both sources

CW Leo Sis HCO TMC-I $HC_{2n+1}N$ H_2CCC SiC_2 C_2S C_3S CH_3CN HNCCC SiC_4 $C_2C_3H_2$ $I-C_3H$ CH_2CHCN C_3N NH_3 $C-C_3HD$ DC_3N HCCNC $C_{2n}H$ HCCNC $C_{2n}H$ HCCNC

Fig. 5. Schematic diagram of detected molecules in the same $\lambda \sim 1.3$ cm spectral range toward IRC +10216 and TMC-1. Molecules in the red, blue, and purple regions indicate that they are detected in IRC +10216, TMC-1, and both sources, respectively. The molecules in black indicate that they have been seen in both sources but are not detected toward the other source in the $\lambda \sim 1.3$ cm spectral range (see Sect. 4.5).

At these frequencies it is possible to compare with dark cloud chemistry !!

Source comparisons

Fortunately it is not only CW Leo !!

Tenenbaum et al. (2010) ApJS 190, 348; ApJ 720, L102: ARO spectral scans of CW Leo and VY CMa, 215 - 289 GHz. CW Leo: 717 lines were detected; 126 are unassigned VY CMa: 130 lines were detected; 14 are unassigned.

Species Observed in this Survey Toward IRC +10216 and VY CMa^a

IRC	+10216 C-rich	VY	'CMa 🔾-ri
Molecule	No. of lines	Molecule	No. of lines
со	5	со	2
SiO	6	SiO	12
SiS	47	SiS	21
CS	10	CS	1
CN	16	CN	3
HCN	17	HCN	3
HNC	3	HNC	1
NaCl	11	NaCl	11
PN	2	PN	2
HCO ⁺	1	HCO ⁺	1
PH3 ^b	1	NS	2
CH ₂ NH	9	PO ^b	6
CP	2	AlO ^b	2
SiC	8	AlOH ^b	2
AlCl	10	SO	7
KC1	9	H_2O	3
AlF	2	SO ₂	36
SiN	4	H_2S	1
HCP	2	U	14
SiC ₂	138		
CCH	17		
NaCN	38		
l-C ₃ H	17		
c-C ₃ H	13		
C_3N	13		
H_2CO	3		
H_2CS	9		
HC ₃ N	13		
c-C ₃ H ₂	16		
C_4H	124		
CH ₃ CN	24		
CH_3CCH	7		
U	123		
Total	720	Total	130

Notes.

^a Bold font indicates molecules common to both sources.

b New species detected in this survey.

Zhang et al. (ApJ 691, 1660, 2009): ARO/SMT spectral scan towards RW LMi 131 – 160, 219 – 244, 252 – 268 GHz 74 lines were detected; 5 are unassigned

Enhanced emission from CN and HC₃N depleted emission from HCN, SiS, and C₄H in RW LMi (compared to CW Leo)

See also Chau et al. (ApJ 760, 66, 2012)

Zhang et al. (ApJ 700, 1262, 2009): ARO/SMT spectral scan towards AFGL3068 130 – 162, 220 – 268 GHz; 72 lines were detected; 3 are unassigned

The chemical composition in AFGL3068 is somewhat different from that in CW Leo with a more extensive synthesis of cyclic and longchain molecules in AFGL3068

TiO, TiO₂, and AICI detected for the first time in this source

De Beck et al. (in press) followed this up in TiO₂ using ALMA

- Complex morphology
- Significant fraction of TiO₂
 remains in the gas phase outside the dust-formation zone

Chemistry: Detailed studies with more elaborate models

Detailed studies based on large number of lines

Fig. 5. Overview of the gas kinetic temperature and expansion velocity used in the radiative transfer model calculated with GASTRoNOoM. In the top panel, we indicate the exponents α from the $T_{kin}(r) \propto r^{\alpha}$ -power laws used to describe the kinetic temperature, and the radial ranges they apply to. See Sect. 3.2.

(b) Lines observed with SEFI

excited levels of C₂H.

345.48

v (GP4) (a) Lines observed with IRAM

Agundez et al. (A&A 543, A48, 2012) studied CS, SiO, SiS, NaCl, KCI, AICI, AIF, and NaCN in CW Leo.

Fig. 1. Particle density *n*, gas kinetic temperature T_k , and expansion velocity v_{exp} as a function of radius in the inner layers of IRC +10216.

Fig. 5. Rotational lines of SiS in IRC +10216 as observed with the IRAM 30-m telescope (black histograms) and as calculated with the radiative transfer model (blue lines).

Detailed radial abundance distributions are derived:

Fig. 12. Abundances of CS, SiO, and SiS in IRC +10216, as derived from the radiative transfer model (continuous lines) and as calculated through thermochemical equilibrium in the innermost regions of the envelope (dashed lines). A vertical dashed line indicates the outer boundary where thermochemical equilibrium is valid ($\sim 3 R_{\star}$).

Fig. 13. Abundances of NaCl, KCl, AlCl (including ³⁵Cl and ³⁷Cl), AlF, and NaCN in IRC +10216, as derived from the radiative transfer model (continuous lines) and as calculated through thermochemical equilibrium in the innermost regions of the envelope (dashed lines). A vertical dashed line indicates the outer boundary where thermochemical equilibrium is valid ($\sim 3 R_{\star}$).

- CS and SiS have significant lower abundances in the outer envelope, which implies that they actively contribute to the formation of dust.
- The amount of sulfur and silicon in gas phase molecules is only 27% for S and 5.6% for Si. This implies that these elements have already condensed onto grains, most likely in the form of MgS and SiC.
- Metal-bearing molecules lock up a relatively small fraction of metals. The results indicate that NaCl, KCl, AICl, AIF, and NaCN, despite their refractory character, are not significantly depleted in the cold outer layers.

Daniel et al. (A&A 542,A37,2012) presented a study of HNC in CW Leo based on IRAM and HIFI observations

Fig. 2. Physical parameters (i.e. dust and gas temperatures, H_2 volume density) used in the present work to describe the circumstellar envelope. Density-enhanced shells are introduced in the current modeling as can be seen in the H_2 volume density curve. The first shell is located at 15" and we assume an intershell distance of 12", the shells being 2" wide.

Fig. 9. HNC line profile for the model with density-enhanced shells (red) and for the model without shells (blue).

- The presence of HNC is consistent with formation from the precursor ion HCNH⁺.
- Radiative pumping through 21 μ m photons to the first excited state of the bending mode V₂ plays a crucial role.

Followed up by observations of HNC from vibrationally excited states by Cernicharo et al. (ApJ 778, L25, 2013) using ALMA. Cernicharo et al. (A&A 518, L136, 2010) & Agundez et al. (A&A 533, L6, 2011): The abundances relative to H_2 derived for HF and HCI in CW Leo, 8×10^{-9} and 10^{-7} respectively, are substantially lower than those predicted by thermochemical equilibrium.

Agundez et al. (ApJ 790, L27, 2014): The detection of PH₃ in CW Leo challenges chemical models, none of which offer a satisfactory formation scenario.

De Beck et al. (A&A 558,AI32,20I3):

Detections of PN and PO in IK Tau suggest that PN and PO are the main carriers of phosphorus in the gas phase, with abundances possibly up to several 10⁻⁷. The current chemical models cannot account for this.

Detailed studies of sources other than CW Leo

W Hya (O-rich)

WAql (S-star)

Khouri et al. (A&A 561,A5,2014 A&A 569,A76,2014)

Fig. 6. Best grid model for the ¹²CO observed integrated line fluxes, when considering the dissociation radius as given by Mamon et al. (1988). Transition ¹²CO J = 16-15 observed by PACS and ISO is not used due to line blending (see Table 1).

Fig. 10. Best model for the ²⁸SiO line emission (red line and crosses), with $f_{\circ}^{SiO} = 4 \times 10^{-5}$ and $f_{cond} = 0$, is compared to the line fluxes observed by SPIRE (green), PACS (blue) and HIFI (purple).

Danilovich et al. (A&A 569, A76, 2014)

Fig. 8. Model line intensities (resolved lines) or total fluxes (PACS lines) divided by the corresponding observed intensities or fluxes. The horizontal axis gives the energy of the upper level of the transition. Model parameters are listed in Table 6.

One of the outcome is studies of the acceleration zone

Decin et al. (A&A 521, L14, 2010) used Herschel CO, H_2O , SiO, to derive velocity law for IK Tau.

$$v(r) \simeq v_0 + (v_\infty - v_0) \left(1 - \frac{R_\star}{r}\right)^{\beta}$$

IK Tau $\beta = 1.8$ W Hya $\beta = 5$ (Khouri et al.) W Aql $\beta = 2$ (Danilovich et al.)

Any viable mass-loss mechanism must adhere to the behaviour in the acceleration zone !!

Chemistry: H₂O in CSEs

H₂O detected by SWAS and Odin in CW Leo, a consequence of vaporisation of icy objects.

Neufeld et al. (A&A 521, L5, 2010): H₂O in the C-star V Cyg, Neufeld et al. (ApJ 717, L29, 2011): H₂O towards 8 C-stars using HIFI.

Decin et al. (Nature 467, 64, 2010) and Neufeld et al. (ApJ 727, L28, 2011) reported higher-energy H_2O lines in CW Leo using HIFI and PACS.

Can be explained only if H_2O is present in the warm inner CSE !!

Agundez et al. (ApJ 724, LI33, 2010) proposed a mechanism based on photodissociation in the inner CSE.

Cherchneff (A&A 526, L11, 2011) proposed a mechanism based on shock-induced chemistry in the upper atmosphere.

Neufeld et al. (ApJ 727, L28, 2011b; ApJ 767, L3, 2013): upper limits on the $H_2^{17}O/H_2^{16}O$ and $H_2^{18}O/H_2^{16}O$ isotopic abundances in CW Leo.

An upper limit of I/470 on $H_2^{17}O/H_2^{16}O$, compared to the photospheric I/840. Provides an important constraint on any model that invokes CO photodissociation as the source of O for H_2O production.

Of course there are detections of H₂O also in M-stars: e.g., Maercker et al. (A&A 494, 243, 2009) and Justtanont et al. (A&A 537,A144, 2012) S-stars: e.g., Schöier et al. (A&A 530,A83, 2011) and Danilovich et al. (A&A 569,A76, 2014)

Temporal variations in nonmasing lines

Cernicharo et al. (ApJ 796, L21, 2014): Strong intensity variations in the high rotational lines of some abundant molecular species toward CW Leo.

CO, SiC₂: little variability CS, SiO, SiS: \approx 25% variation HCN, HNC: 20%–50% variation C₂H: strong variability

Figure 1. Selected spectra observed with *Herschel* in 2010 May (black thin spectra; from Cernicharo et al. 2010b) and 2010 November (red thick spectra). The spectrum at 543.5 GHz was taken in 2011 May. Windows within the panels show zooms to selected lines. Intensity scale is antenna temperature in K and abscissa is frequency in MHz.

Chemistry: Large samples

Schöier et al., (A&A 473, 871, 2007; A&A 550, A78, 2013) & Ramstedt et al., (A&A 499, 515, 2009) studied samples of the order 20 M-, 20 S-, and 20 C-stars

These studies are still unique in terms of number of sources.

M-stars S-stars C-stars

Provide important constraints on chemical models !!

Isotopes

Isotope ratios are important tracers of stellar nucleosynthesis.

The problem is to convert I("XA) & I("YA) into ["X] & ["Y], i.e., molecular isotopologue ratios into elemental isotope ratios

A number of things need to be considered:

- Optical depths
- Isotope-different excitation (in some cases masering)
- Isotope-selective photodissociation
- Chemical fractionation

Circumstellar ¹²C and ¹³C

Ramstedt & Olofsson (A&A 566,A145, 2014) have presented an extensive study of circumstellar ¹²CO and ¹³CO

The three chemical types have (on average) different ¹²CO/¹³CO
 The J-stars are very different from the rest

Circumstellar ¹⁶O, ¹⁷O, and ¹⁸O

deNutte et al. (in prep)
9 AGB stars with both C¹⁷O and C¹⁸O
+ some objects with only C¹⁸O

Studies of this type are reaching their limits on single telescopes !!

Justtanont et al. (A&A 578,A115,2015) 9 OH/IR stars with only $H_2^{17}O$ detected In general, $I(H_2^{18}O)/I(H_2^{17}O) < 0.1$

These are massive stars, $>5M_{\odot}$

Circumstellar ²⁸Si, ²⁹Si, and ³⁰Si

Peng et al. (A&A 559, L8, 2013):

Fig. 2. Comparison of ${}^{29}\text{Si}/{}^{30}\text{Si}$ in evolved stars. The dashed line indicates the terrestrial and solar ${}^{29}\text{Si}/{}^{30}\text{Si}$ abundance ratio of 1.51 (de Bièvre et al. 1984; Anders & Grevesse 1989; Asplund et al. 2009). The red line is a linear fit to the ${}^{29}\text{Si}/{}^{30}\text{Si}-\dot{M}$ relation.

Multi-isotope studies

CW Leo

CW Leo, RW LMi, AFGL3068

Table 3

Isotopic Abundance Ratios

Table 1: Isotope ratios in the CSE of IRC+10216

Isotope ratio	Ratio	IRC/Solar	Species used
¹² C/ ¹³ C	45	0.5	CS
$^{12}C/^{14}C$	> 63000		CO
$^{14}N/^{15}N$	5300	20	HCN
$^{16}O/^{17}O$	840	0.3	CO
$^{16}O/^{18}O$	1300	3	CO
²⁸ Si/ ²⁹ Si	18	0.9	SiO, SiS
²⁸ Si/ ³⁰ Si	27	0.9	SiO, SiS
${}^{32}S/{}^{33}S$	110	1	SiS
$^{32}S/^{34}S$	22	1	SiS
$^{32}S/^{36}S$	2700	0.4	CS
³⁵ Cl/ ³⁷ Cl	3.0	1	AlCl, HCl, NaCl, KCl
$^{24}Mg/^{25}Mg$	8	1	MgNC
$^{24}Mg/^{26}Mg$	7	1	MgNC

Isotopic Ratio	CRL 3068	CIT 6 ^a	IRC+10216 ^b	Solar ^c	
	Species	Value			
¹² C/ ¹³ C	12C34S/13C32S	29.7 ^d	45.4	45	89
	$^{12}CO/^{13}CO$	5.6 ^e			
	¹² CS/ ¹³ CS	9.8 ^e			
	H12CN/H13CN	1.2 ^e			
¹⁴ N/ ¹⁵ N	H13C14N/H12C15N	1099 ^f			272
	HC14N/HC15N	45°			
¹⁶ O/ ¹⁷ O	13C16O/12C17O	668: ^f	890	967	2680
,	C16O/C17O	125:e			
¹⁶ O/ ¹⁸ O	13C16O/12C18O	472 ^f		1172	499
	C16O/C18O	88 ^e			
¹⁷ O/ ¹⁸ O	C17O/C18O	0.7:		1.14	0.2
$^{32}S/^{34}S$	C32S/C34S	7.4 ^e	6.7 ^e	18.9	22.5
³³ S/ ³⁴ S	C33S/C34S	0.3:	0.2:	0.19	0.18
²⁹ Si/ ³⁰ Si	29SiS/30SiS	2.5	1.0	1.46	1.52
²⁸ Si/ ³⁰ Si	²⁸ SiS/ ³⁰ SiS	28.8	8.8°	24.7	29.9
²⁸ Si/ ²⁹ Si	²⁸ SiS/ ²⁹ SiS	11.5	8.9°	17.2	19.6

Notes.

^a From Zhang et al. (2009).

^b From He et al. (2008) except the ${}^{12}C/{}^{13}C$ ratio which was taken from Cernicharo et al. (2000).

^c From Lodders (2003).

^d Assume that the ${}^{34}S/{}^{32}S$ ratio is solar.

e Should be treated as lower limits due to opacity effect.

^f Adopted: ${}^{12}C/{}^{13}C = 29.7$.

Zhang et al. (ApJ 700, 1262, 2009)

Mass loss

Mass-loss-rate determinations

Mass-loss rates from Ramstedt et al. (2009) and references therin: These studies are still unique in terms of number of sources.

Important constraints on any viable mass-loss mechanism !!

Important to complement with similar studies in different environments, e.g., metallicity !! This needs ALMA !!

See also De Beck et al. (A&A 523,A18,2010)

Danilovich et al. (in press) derived mass-loss rates for a sample of 40 stars where HIFI CO(5-4, 9-8) data exist (SUCCESS project)

Fig.7. Comparisons with mass-loss rates from past studies: $\dot{M}_{\text{previous}}/\dot{M}_{\text{new}}$, grouped by chemical type. C stars are grey, M stars are black and S stars are white.

Mass-loss rates on average 40% lower than previous studies (even after correcting for distances and and CO abundance assumptions).

The spread in the estimates between the studies is about ±50%.

Within the adopted circumstellar models the mass-loss-rate estimates are accurate to within ±50% !!

Is there a superwind?

Justtanont et al. (A&A 556, A101, 2013):

Fig. 1. SED fits for the sample stars (solid line) to the ISO spectra (black dots) and photometric points from IRAS (filled green circles). The PACS (blue dots) and SPIRE (cyan dots) spectra are also plotted when available. The published photometric data (open circles) are taken from Dyck et al. (1974) and Epchtein et al. (1980) for WX Psc, Persi et al. (1990) for OH 127.8+0.0, Garcia-Lario et al. (1997) and Lepine et al. (1995) for AFGL 5379, Werner et al. (1980) for OH 26.5+0.6, and Justtanont et al. (2006) for both OH 26.5+0.6 and OH 30.1-0.7.

4 extreme OH/IR-stars:

 $\dot{M}_{\rm dyn} \approx (2 - 10) \times 10^{-4} \,\,\mathrm{M_{\odot} \, yr^{-1}}$ $\dot{M} \approx 3 \times 10^{-6} \,\,\mathrm{M_{\odot} \, yr^{-1}}$

beyond (1-3)x10¹⁶ cm to explain the low-J CO lines.

With $v_e \approx 15$ km/s this corresponds to a time scale of $\approx 200 - 600$ yr for the SW phase

The amount of mass lost during the SW is of the order 0.1 $M_{\odot}\,!!$

de Vries et al. (A&A 561,A75, 2014): used the 69 μ m feature to estimate that the outer radius of the SW must be < 3×10^{16} cm.

Thus, the same problem arises, far too little mass is lost during one SW for the more massive OH/IR-stars !!

Are there several SW phases for an individual star?

What do the OH data tell us about the duration of the SW phase?

Measure the duration using ALMA and CO lines!

 $\int_{t \wedge CP} \dot{M}(t) \, \mathrm{d}t$

M_{lost} & large-scale structure

 $M(t, \theta, \phi)$

Conclusions so far from NRT survey of ≈ 100 stars of different chemical types, variability types, and mass-loss rates in the HI 21cm line (Gerard, Le Bertre, Libert, et al.):

- High detection rates for low mass-loss rates (<10⁻⁷ M_☉/yr; irregulars and semi-regulars), but lower for Miras
- Double-component line profiles: suggesting an expanding, decelerated wind, and a quasi-stationary shell of material that accumulates between the termination shock and the ISM
- Total HI masses are only of the order few x (10⁻³ 10⁻²) M_{\odot}
- HI line centroids are often displaced towards zero velocity (in LSR scale)

Conclusions from imaging of about a dozen sources in HI 21 cm line (Matthews et al.):

- Confirm that the HI envelopes are characterised by both its inherent properties and its interaction with the ISM
- Deceleration of the gas is measured; this gives an age estimate of the mass-losing history of the star

α Ori has been losing matter at a rate of 1.2×10^{-6} M_☉/yr for the past 8×10^{4} yr

Polarisation

There is great hope on what ALMA can do when it comes to polarisation (masing as well as non-masing lines).

Important characteristics:

- Magnetic field strength vs r
- Magnetic field shape
- Origin of magnetic field
- Importance of binarity
- Importance for mass-loss characteristics

O IKTau RTVir IRC60370 Si0 masers 2 log(B) [G] H_oO masers 0 OH masers $^{-2}$ -40 2 3 -1 1 log(R/R.)

Fig. 5. Magnetic field strength along the line of sight versus the radial distance of the masers to the star. The black boxes show typical regions of the plot where results from the literature for SiO, H₂O, and OH maser occur, and they are normalized for $R_* = 1$ (Vlemmings et al. 2002, 2005; Herpin et al. 2006; Rudnitski et al. 2010). Our measurements are shown by the hollow blue circles (IK Tau), hollow green squares (RT Vir), and filled red triangles (IRC+60370). The short-dashed, solid, and long-dashed inclined lines show a dependence $\propto R^{-1}$, $\propto R^{-2}$, and $\propto R^{-3}$ for the magnetic field, respectively. The position of the AGB surface of a star with radius of 1 AU is also shown.

Leal-Ferreira et al. (2013)

Binarity

There is great hope on what ALMA can do when it comes to binarity.

CW Leo, CO(2-1) Cernicharo et al. (2015)

Observed T_MB(12C0 J=2-1) in IRC+10216 with the IRAM 30m Telescope

o Ceti, CO(3-2) Ramstedt et al. (2014)

Get Based of the second second

R Scl, CO(3-2) Maercker et al. (2012)

RW LMi, HC₃N(4-3) Claussen et al. (2011)

CW Leo, ¹³CO(6-5) Decin et al. (2015)

RW LMi, HC₃N(5-4) Trung & Lim (2009)

Thank you !!