Shells around red supergiants

Jonathan Mackey

I. Physikalisches Institut, University of Cologne

Collaborators:

Shazrene Mohamed (SAAO, Cape Town, SA) **Vasilii Gvaramadze** (Lomonosov Moscow State University, Russia) Norbert Langer (Argelander-Institut für Astronomie, Bonn) Takashi Moriya, Norberto Castro (AIFA, Bonn), Luca Fossati (Graz) (Queens U. Belfast), Hilding Neilson (U. Toronto), Rubina Kotak Dominique Meyer (Tübingen)

9 July 2015, ESO STEPS2015 workshop, Garching bei München

Unterstützt von / Supported

Alexander von Humboldt

Outline

- Motivation: What can we learn from shells around evolved stars?
- Resulting from varying mass loss, or environmental effects?
- Evolved stars: the red supergiants Betelgeuse and W26.
- Betelgeuse and its 2 (or 3?) circumstellar shells.
- HI (21cm) emission from around Betelgeuse.
- Radio and nebular ([NII] and Halpha) emission from the wind of W26.

Jonathan Mackey, ESO STEPS2015, 09.07.2015

Massive Star feedback

- Massive stars drive galaxy evolution.
- Ionising radiation, stellar winds, supernova feedback, enrichment (Spitzer 1978; Weaver+1977; Mac Low & McCray 1988; Matzner 2002)
- Feedback over lifetime of stars is being simulated in less idealised situations (Mellema+2006, Arthur+2011, Rogers & Pittard, 2013, Dale+2013).
- BUT, massive star evolution is not well understood.
- Late-stage feedback is important (Z; v. strong winds)
- Supernovae have to plough through CSM to get to ISM.
- —> Assigning progenitors to different types of supernova is very difficult.

The Bubble Nebula (NGC 7635)

Astronomy Picture of the day 2.10.2014 http://apod.nasa.gov/apod/ap141002.html

> red = H alphablue = [O III] 5007

Image Credit & Copyright: Bernard Michaud

What can wind bubbles tell us? Ionized wind of W26 in Westerlund 1 Wright+ (2014) • **Fate** of a massive star determined by 26 cumulative mass-loss history —> final mass. ~0.04 pc • Will it explode? • What kind of supernova? • How will it look (CSM interaction)? Declinati 34.0 • How far does the free-wind region extend? 10^{15} cm, 10^{16} cm, 10^{17} cm, 10^{18} cm, more? 38.0 How much mass is found close to the star?

0

2 4

06.2

05.8

05.4

Right ascension

- Determined by mass loss and environment.

Betelgeuse

Betelgeuse (pre-Herschel)

- IRAS 60 µm image
- Noriega-Crespo et al.
 (1997) 3
- Total mass of wind and bow shock
 M~0.033 M_☉
 for d=200pc.

20'

10'

0'

-10'

-20'

Betelgeuse (pre-*Herschel*)

- DSS POSS2 Blue image (right).
- Optical/NIR imaging is very difficult!
- CSM first discovered in far-IR data.

20'	
10′	
0′	
-10′	
-20′	
	20'

 \sum_{δ}

Betelgeuse (pre-*Herschel*)

- AKARI data (Ueta+,2008,PASJ)
- Bow-shock has M~0.0033 M_☉,
 based on AKARI flux (Mohamed et al., 2012, A&A).

Herschel's view of Betelgeuse

bar

- Far infrared emission shows dust emission from re-radiated starlight.
- The "bar" may be circumstellar (Mackey+,2012) or interstellar (Decin+,2012) in origin.
- The bow shock marks the interaction of the RSG wind with the surrounding medium (Mohamed+,2012).
- What is the inner shell? Discovered in HI 21cm obs. by Le Bertre+ (2012); confirmed with *Herschel* (Decin+,2012).

bow shock

inner shell

Herschel image (PACS 70 µm) of Betelgeuse's surroundings (Decin+2012)

Herschel's view of Betelgeuse

- Far infrared emission shows dust emission from re-radiated starlight.
- The "bar" may be circumstellar (Mackey+,2012) or interstellar (Decin+,2012) in origin.
- The bow shock marks the interaction of the RSG wind with the surrounding medium (Mohamed+,2012).
- What is the inner shell? Discovered in HI 21cm emission by Le Bertre+ (2012)

Circumstellar Medium (CSM) structures

Structure	radius	mass	interpretation	
bar	0.5 pc	0.002–0.029 M⊙	interstellar/circumstellar?	
bow shock	0.35 pc	0.0024–0.03 M⊙	wind-ISM interaction	
Inner shell	0.12 pc	0.09 M⊙	Photoionization-confined shell	
Masses from: Decin+,2012; Mohamed+,2012; Le Bertre+,2012.				

- Could also happen for AGB star winds!

• We propose the inner shell is confined because the outer parts of the wind are photoionized by an external radiation field. • The outer wind is hot ($\sim 10^4$ K), inner wind is colder (~ 100 K). Pressure gradient across D-type ionization front drives a shock.

Photoionization-confined shells

- inner shell is the border of an "inside-out" HII region.

Schematic diagram for Betelgeuse's bow shock and inner shell.

Mackey+, 2014, Nature, 522, 282.

- Shell mass increases approximately linearly with time until it approaches its equilibrium mass.
- Stars like Betelgeuse can have shells with masses ~0.1-1 M_{\odot} .
- Stars like W26 (in Westerlund 1) will lose up to 20 M_☉ in the RSG phase, and so can have shells with ~4-7 M_{\odot} .
- Final shell mass depends on mass-loss rate and total mass lost.

Analytic model assumes SN shock is always radiative and that 50% of kinetic energy is radiated in the postshock gas (Moriya+,2013).

Supernova—shell interaction

-22 -20 –18 Julia – 16 Julia – 16 <u>ب</u> 14– -12 s -10-8 2000

- Bolometric luminosity evolution of supernovae interacting with photoionization-confined shells.
- Choose massive shells, with ionizing fluxes such that the shell is at 2x10¹⁶ cm (lower mass shell) and 4×10^{16} cm (higher mass shell).
- Calculations for explosions with 10^{51} and 5×10^{51} ergs (1B and 5B).
- Ejecta mass 15 M_☉.
- Find strong rebrightening and long "plateau" phase, although much of this may not be optical emission.

W26 in Westerlund 1

JHK image from Brandner+2008.

- Probably the most massive young star cluster in the Galaxy (Brandner +2008).
- Unfortunately has $A_v = 13$.
- Age is 3-5 Myr, so that it contains both hottest (WR) and coldest (RSG) stars at the same time.
- Has largest Galactic WR star population (Crowther+, 2006).
- Has >14 evolved, extreme supergiant stars (Clark+2005).
- Has a magnetar (Muno+2006).

The evolved stars have radio-bright circumstellar nebulae (Dougherty+2010). This is from dense stellar winds that are ionized by the extreme environment in Wd1.

W26 has a very bright optical nebula (Wright +2014), also W20, W237. Other super/hypergiants also (e.g. W9,W265,W4).

-• • •

- The evolved stars have radio-bright circumstellar nebulae (Dougherty+2010).
- This is from dense stellar winds that are ionized by the extreme environment in Wd1.
- W26 has a very bright optical nebula (Wright +2014), also W20, W237.
- Other super/hypergiants also (e.g. W9,W265,W4).

0 0

00.

- Most of the mass lost by stars with <30 Msun is as a cold RSG, not a hot star.
- May also be true for higher mass stars at low metallicity (Yoon+2012; Szécsi+2015).
- What happens this gas?
 - Can it stay cold (neutral)?
 - Can photoionized gas remain at 10⁴ K?
 - What fraction becomes hot?

Photoionized wind of W26

- Ring-shaped emission nebular about 0.03 pc from W26, a massive RSG (about 40 M_{\odot}) in Westerlund 1.
- Could also be shock ionization by wind-wind collision.
- Green box shows the FORS slit for spectral data (Wright+,2014).

W26 in Westerlund 1 (Wright+, 2014)Hα+[NII] surface

brightness

See also Gvaramadze+2014; Meyer+2014; for **IRC -10414**.

One interpretation is that the wind is photoionized by the nearby O, B, and WR stars.

Photoionized wind of W26

Ionizing flux constrained to give bright nebula at the observed radius, for given Mdot.

Mackey, Castro, Fossati & Langer, A&A, submitted

- Spherically symmetric simulations.
- Model with non-equilibrium heating and cooling (following Henney+2009).
- Wind velocity is unknown, so we have a slow model (15 km/s), shown at left, and a fast model (25 km/s, next page).
- Shows gas density, temperature, ionization state, as function of radius from W26.

Application to W26

Ionizing flux constrained to give bright nebula at the observed radius, for given Mdot.

- Here the velocity is 25 km/s, so the ionization front is R-type (no shock).
- Smooth increase in ionization fraction, temperature.
- Little change in density and velocity across front.
- Less peaked electron density.

Projected line emission

- Sharp D-type Ionization front gives very peaked [NII] and Halpha emission.
- Line ratio approx. correct.
- Simulated emission has zero rad. vel. at peak emission (limb brightening).
- Observed emission is blueshifted for the whole nebula.

Projected line emission

- R-type Ionization front gives less peaked [NII] and Halpha emission.
- Line ratio again approx. correct.
- Same problem with radial velocities.
- The whole nebula is observed to be blueshifted —>
- emission cannot be spherically symmetric.

Interpretation

- Correct line ratio \longrightarrow gas is photoionized.
 - N is enriched \longrightarrow Wind material.
 - Blueshifted nebula —> asymmetric pressure is pushing the wind of W26 towards us.
- Comparing to Betelgeuse, the observed nebula of W26 seems like a bow shock.
- There could be a photoionized shell closer to W26, with $>0.1 M_{\odot}$.
- W9 is 0.24pc from W26 (projected) and has a prodigious wind:
 - Mdot $\approx 3.3 \times 10^{-4}~M_{\odot}~yr^{-1}$ and
 - $-v_{\infty} \approx 200 \text{ km s}^{-1}$ (Dougherty+2010).
- Most of the cluster could be embedded in the wind of W9.

Conclusions

- Modelling circumstellar structures around massive stars is useful and important! (whether you care about stars or supernovae).
- Betelgeuse has steady mass loss, but two shells, one static with mass 0.1 M $_{\odot}$ —> could be a type IIn supernova? (cf. Smith+2009).
- External ionization can heat RSG winds, drive shocks, make shells.
- Shells can be much closer to the star than ISM-confined shells.
- This can happen for AGB stars too, if near hot stars...
- RSGs in clusters can have >1 M_{\odot} shells at ~10^{16} cm.
- Cool stars lose lots of mass in hot clusters (>3 Myr old).
- It is not clear how this gas evolves thermodynamically or dynamically, but it is important for cluster evolution.