Dynamical Atmospheres & Winds of AGB Stars

A Theorist's View

Susanne Höfner Department of Physics & Astronomy Uppsala University

stellar pulsation & convection induce strong shock waves which propagate outwards through the extended stellar atmosphere

3D star-in-a-box model of an AGB star (Freytag & Höfner 2008) snapshot of the gas density for a cut through the center of the star

stellar pulsation & convection induce strong shock waves which propagate outwards through the extended stellar atmosphere

dust forms in the wake of the shock at distances of 2-3 stellar radii and is accelerated outwards by radiation pressure triggering a wind

3D star-in-a-box model of an AGB star (Freytag & Höfner 2008) snapshot of the gas density for a cut through the center of the star dust distribution shown in green

Dust chemistry: the role of C/O

Dust chemistry: the role of C/O

Observational constraints on dust

Dust-driven winds & CS reddening for C-stars (Nowotny at al. 2013)

Observational constraints on dust

10

8

(V-K).

12

cycle, M-stars (Bladh et al. 2013)

Observational constraints on dust

M-type AGB stars show small variations in J-K and large variations in V-K.

Are these variations of colors with phase caused by dust or molecules?

Does this tell us something about the wind mechanism?

Color variations during pulsation cycle, M-stars (Bladh et al. 2013)

Quantitative dynamic models

Dynamics

- > pulsation & convection
- strong shock waves
- stellar wind

Dust

- seed particles
- > grain growth
- grain destruction

Radiation

- variable luminosity
- > molecular opacities
- dust opacities

Wind properties

- mass loss rates
- wind velocities
- dust yields

Höfner et al. (2003), Höfner (2008)

Synthetic observables

- high-/low-res spectra
- light curves
- interferometric data

Observations of spectral features at wavelengths of about 10 and 18 microns in AGB stars suggest olivine- and/or pyroxene-type silicates

 $Mg_{2x}Fe_{2(1-x)}SiO_4$ $Mg_xFe_{(1-x)}SiO_3$

Observations of spectral features at wavelengths of about 10 and 18 microns in AGB stars suggest olivine- and/or pyroxene-type silicates

Mg_{2x}Fe_{2(1-x)} SiO₄

Mg_xFe_(1-x) SiO₃

... no strong constraints from MIR spectra on the Mg/Fe ratio

X = ?!?

Fe₂ SiO₄

Mg₂SiO₄

Mg-rich $1 \leftarrow X \rightarrow 0$ Fe-richIow absorptionhigh absorptionat visual and near-infrared wavelengths

Mg₂SiO

Fe₂SiO

 $1 \leftarrow X \rightarrow 0$ Mg-rich Fe-rich high absorption low absorption at visual and near-infrared wavelengths

Could drive a wind by scattering Cannot form sufficiently close if particles are large (0.1-1 μ m) ...

to the star to drive a wind !

Models of stellar winds driven by photon scattering on Mg_2SiO_4 grains with sizes of 0.1–1 micron show realistic mass loss rates & wind velocities Höfner (2008), Bladh et al. (2015)

A close halo of large transparent grains around extreme red giant stars

Barnaby R. M. Norris¹, Peter G. Tuthill¹, Michael J. Ireland^{1,2,3}, Sylvestre Lacour⁴, Albert A. Zijlstra⁵, Foteini Lykou⁵, Thomas M. Evans^{1,6}, Paul Stewart¹ & Timothy R. Bedding¹

Large grains around AGB stars

Combining advanced observational techniques:

Polarimetry

→ identification of starlight scattered by dust

Interferometry

 \rightarrow spatial scale of dust shell

Multi-wavelength study

 \rightarrow constraints on grain size

Results for 3 AGB stars:

- $0.3\ \mu m$ grains at 2 stellar radii
- → fits nicely with models of Höfner (2008)

Norris et al. (2012)

Dynamic models: ongoing work

 Implementation of more dust species for stars with C/O < 1 (wind driving candidates and materials relevant for spectra)

Dust species of interest

Candidates for wind driving

- Mg₂SiO₄: used in exploratory models (Höfner 2008, Bladh 2013, 2015)
- MgSiO₃: under investigation, promising alternative (Höfner et al., in prep.)

Other relevant species (spectra):

- Fe-bearing silicates in the wind (Fe-free grains are too cold to produce emission)
- Al₂O₃: observed close to stellar surface with spectro-interferometry

Dynamic models: grain growth

Dynamic models: ongoing work

- Implementation of more dust species for stars with C/O < 1 (wind driving candidates and materials relevant for spectra)
- Improved description of sub-photospheric dynamics and variable luminosity in the atmosphere & wind models (simulating effects of pulsation and large-scale convective motions), derived from state-ofthe-art pulsation and convection models

Effects of pulsation and large-scale convection enter wind models as boundary conditions

Small differences in luminosity variations (shape & phase relative to gas velocity and shocks) may have significant effects on dust formation and mass loss

Liljegren et al., in prep.

radial movement of mass shells

regions with dust (shown in red)

simple estimate: $R_c \alpha L(t)^{1/2}$

dust-free pulsating atmosphere with shocks

bolometric phase

Liljegren et al., in prep.

Effects of pulsation and large-scale convection enter wind models as boundary conditions

Small differences in luminosity variations (shape & phase relative to gas velocity and shocks) may have significant effects on dust formation and mass loss

Liljegren et al., in prep.

wind model for a pulsating carbon star

CO vibration-rotation lines in the NIR as probes of atmospheric and wind dynamics

Nowotny et al. (2005, 2010)

complex profiles of second overtone lines (leftmost panel) due to shock waves passing through the line formation zone

Pulsation, convection and shocks

3D star-in-a-box models

snapshots of the gas density (cut through the center of the box) showing giant convection cells and shocks

Freytag & Höfner (2008)

Freytag (2014)

Work in progress: a small model grid with different stellar parameters

Pulsation, convection and shocks

Time sequences: gas density (top) and surface brightness (bottom)