

Optical Interferometry, Current and Future capabilities

J.-P. Berger VLTI Programme Scientist

Three facilities in operation

4 x 8 m UT 4 x 1.m AT Bmax = 160m

Instruments:

PIONIER: 4T (H, R~40) AMBER: 3T (H,K, R ~12000) MIDI: 2T (N R~ 300)

Midi decommissioned Closed for P95 CHARA

6 x 1 m Telescopes

Bmax = 330m

Instruments:

CLIMB: 3T (H, K, R~5) MIRC: 4-6T (H,K, R ~40) PAVO: 3T (R R~ 100) VEGA: 3T (B,V,R ~1500 -30000) NPOI

6 x 0.12 Siderostats (+ 4 1x1.8 Keck O?) Bmax = 79m (437m)

Instruments:

V,R: 4-6T, R ~ 80

STEPS 2015

__ || 🖸 🎮 ;= 🚧 || 🛥 || = 🚺 💶 🖬 💶 🐜 📭

ACHIEVEMENTS

Exquisite constraints on stellar surfaces

ႍ__ || 🙆)⊨ ;= ;= || = || = || = 0 💶 := !+ »₭ 📭

STEPS 2015

ES

Spectro interferometry was enabled

Molecular layer spatio-temporal structure exposed

Efficiency has enabled surveys with N>100 objects

Binarity among massive stars

Surface brightness relations among MS , F, G, K stars

2014 Sana ++

Exozodiacal dust

2013 Boyajian ++

Optical interferometry went from snapshot to imaging

Optical interferometry went from snapshot to imaging

BUT ... uv coverage still a limitation

Optical interferometry went from snapshot to imaging

CAUTION: not the same object

ES

Optical interferometry went from snapshot to imaging

CHALLENGES FOR THE NEXT DECADE

VLTI in the next decade

The scientific ambition is multiple

Understand the structure of AGN nuclei

Understand how stars (single or binary) evolve and interact with their environment

Understand GRAVITY

Combination of <u>surveys</u>, detailed <u>imaging & astrometric</u> campaigns

GRAVITY: pushing the frontiers of our knowledge in black-holes and fundamental physics.

A VLT-end-to end metrology allows astrometry between two objects

MATISSE:

4 Telescopes: L, M, N R ~ 4000 **PI: B. Lopez (OCA)** 2018

In operation: 2018

- Observing planet formation processes at the astronomical unit scale
- Mapping Active Galactic Nuclei central parsecs
- The formation of massive stars
- Dust and winds from evolved stars

10 5 0 -5 -10 10 5 0 -5 -10 10 5 0 -5 -10 10 5 0 -5 -10 10 5 0 -5 -10

Combine spectral resolution and imaging

Wittkowski++ 2011

Paladini in prep

ES

Upgrade the infrastructure Make it performant (AO + phasing)

+ES+

Expand the user base and join synergies

Develop VLTI expertise centers: Provide VLTI users with support in preparing their proposals, reducing their data and reconstructing images *Ongoing discussion with JMMC*

Couple imaging and spectroscopy and use simultaneously the VLTI instruments

THE FUTURE OF OPTICAL INTERFEROMETRY

Upgrades / new facilities

= || 🙆 🏴 := 🛑 || 🗰 || = 0] = 0 💶 := 🖬 🛃 💥 📭

Key areas of scientific strength for VLTI

AREAS of strength

- Fundamental stellar physics including rotation, pulsation …
- How do stars and planetary systems form?
- How do stars enrich galaxies?
- How do massive stars form and interact with their environment?
- How do SN progenitors work?
- Binaries from birth to death.
- O Do we understand SMBH interaction with host galaxy
- The galactic center

Global approach vs single object approach

AREAS to investigate

- Improvement of the cosmological distance scale;
- Ground based astrometric follow-up of exoplanet detections (post-GAIA);
- Ocharacterisation of host stars in the context of exoplanet
- and asteroseismology transit missions (e.g PLATO);
- Constraints on strong lensing.
- Microlensing

Establish the instrumental roadmap in 2016

WRAP UP

WRAP UP

- Optical interferometry is now a reliable technique
- out still needs user support to reach wider community
- Image reconstruction has considerably progressed but work still remains
- Some performance issues remain to be addressed (spectro-interferometry)
- PIONIER, GRAVITY and MATISSE will provide unique angular resolution spectro-imaging capability: we are OK for the next decade !
- Evolved star community expected to be a strong contributor to the VLTI prospective effort

VLTI SCHOOL COLOGNE 6-13 SEPT DEADLINE: JULY 15TH

The 8th VLTI Summer School, Cologne, 6 - 13 September 2015

High angular resolution in astrophysics: optical interferometry from theory to observations

Θ

æ

JANAC C

www.astro.uni-koeln.de/vltischool2015

scentre, socascies construct Argo-Relation Medically (Relativistics) Interpret/ Nati Balega (202) Annial Institution Response Institute Obstanting, Seriound labor haven beether & frankings of Photoshymas in benefit, based Party Early Britanishels to Arts Annual Wirhol Hogerheite Lander (Inservation, Natherlands) Jean Water Linearchy of Herma Austrian Salar Ross (Emands of Saint Eighted tions taken that its annual to him, having Burninger (Research is Stroffer, Sand Records Marcel Detects of Teners Indi-Andrea Machinetti Davat Carine for Astronomy, Belleville log facts (Beaustice de face, house) Replice for Chie No Panti Inthe Schemanie, General Rates Limbs Institute in Limsking in Induite in 1787, Japani Just hards: Dimension in organ Adquest Gerfilleight (Dass Nov Parch Institut 16 Radioantersons, Ger

UCKN, Mickell Sel-Contenting Ander-Falssinger Distantiation KBN, Generary Materia Lagon Distantiation KBN, Generary Materia derfinante: Distantiation Address Generary Distantiation (Distantiation KBN, Generary) Anan Antonion (Distantiation KBN, Generary) Anan Mehandromatian: Simirarikit an KBN, Generary) Anan Mehandromatian: Simirarikit an KBN, Generary Kataj Michaelontatian: Simirarikit an KBN, Generary