

#### UPPSALA UNIVERSITET

# An investigation of the morphology and kinematics the circumstellar envelope of the AGB star $\pi^1$ Gruis

D. D. Lam<sup>1</sup>, S. Ramstedt<sup>1</sup>, W. Vlemmings<sup>2</sup>, S. Höfner<sup>1</sup>

 Division of Astronomy & Space Physics, Department of Physics & Astronomy, Uppsala University, 751 20 Uppsala, Sweden. E-mail: <u>lam.doan@physics.uu.se</u>
Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden

#### Abstract

The S-type AGB star  $\pi^1$  Gruis has a known companion at a separation of 400 AU. Previous observations of the circumstellar envelope (CSE) show strong deviations from spherical symmetry. We present our results from the analysis of ALMA-ACA and SMA observations of  $\pi^1$  Gruis. The images of the rotational line emission from CO *J*=2-1 and 3-2 provide good constraints for a model of the morphology and kinematics of the CSE. We model the source using SHAPEMOL (Santander-García. M et al. 2015) to derive the density and velocity distribution.

#### Observation

CO J = 2-1 and CO J = 3-2 emission of  $\pi^1$  Gruis [  $\alpha$ (J2000)=

The observations have four spectral windows with a width of 2 GHz

 $22^{h}22^{m}44^{s}.2$ ,  $\delta(J2000)=45^{0}$  56<sup>°</sup> 52<sup>°</sup>.6] were observed in 2004 with the SMA and in 2013 with the ALMA-ACA, respectively. The SMA observations were made with a 2 GHz bandwidth correlator and a 812.5 Khz channel separation over 256 channels. The ALMA-ACA observations consist of a three-point mosaic covering an area of 25"x25".

-26 Km/s -24 Km/s -28 Km/s -30 Km/s  $\bigcirc$  $\bigcirc$ -20 Km/s -18 Km/s -16 Km/s -22 Km/s -10 Km/s -12 Km/s -8 Km/s -14 Km/s -6 Km/s -4 Km/s -2 Km/s 0 Km/s  $(\circ)$ 



centered on 331, 333, 343, and 345 GHz. The resulting spectral resolution is about 0.5 km/s, but it has been binned to 2 km/s to improve sensitivity. The beam size for the ACA observations is 4.5"x2.5". We used CASA software to perform calibration and make the clean maps with high signal-to-noise ratio.







Fig. 1 – Intensity and contour maps for CO J = 3-2 (left), CO J = 2-1(right); and PV diagram of CO J = 3-2 (center). Channel velocities are indicated in the upper left corner. Contour levels are 3, 5, 9, 15, 20, 25  $\sigma$  ( $\sigma$ =1Jy/ beam) for CO J = 3-2 and 2, 4, 6, 8, 12  $\sigma$  ( $\sigma$ =0.75Jy/ beam) for CO J = 2-1; and 2, 4, 8, 12, 16, 20 $\sigma$  ( $\sigma$ =1Jy/ beam) for the PV diagram. The synthesized beam is shown in lower left corner of each panel.

#### A SHAPEMOL Model for the $\pi^1$ Gruis envelope



Fig. 2 – Sketches illustrate two components in the CSE of  $\pi^1$  Gruis: low velocity expanding torus and high velocity bipolar outflow.

Fig. 3 – Line profile produced from the model with beam size of 30".

| Parameter   | Value                                                                      |
|-------------|----------------------------------------------------------------------------|
| Mass loss   | $5.10^{-7} (r/3 \ge 10^{15} cm)^{0.25} M_{sun} yr^{-1}$ (Chiu et al. 2006) |
| Density     | $6.10^{11} (r/10^{15} cm)^{-1.75} m^{-3}$ (Torus)                          |
|             | $6.10^{10} (r/10^{15} cm)^{-1.75} m^{-3}$ (Outflow)                        |
| Velocity    | 15 x (r/6.10 <sup>16</sup> cm) km/s (Torus)                                |
|             | $15 + 45(r/6.10^{16} cm) km/s$ (Outflow)                                   |
| Temperature | $300 (r / 1.3 \times 10^{15} cm)^{-0.7} K $ (Chiu et al. 2006)             |

Table 1. Input parameters for the model of  $\pi^1$  Gruis envelope

## Acknowledgements

We are very grateful to the SMA and ALMA staff for performing the observations. It is pleasure to thank to Y. Ken for providing SMA data.



Fig. 4 – Intensity and contour Channel maps for CO J = 2 -1 from SHAPEMOL model

### Conclusion

The observational results clearly show two separate components: slowly expanding and flared torus with velocity less than 15 km/s and high velocity bipolar outflow with velocity up to 60 km/s. Our best fit model for CO J = 2-1 emission roughly determines the velocity distribution and density for the CSE. Also, the model suggests the bipolar outflow is inclined relative to the torus. The angle of inclination is about  $30^{\circ}$ . Further studies are needed before any firm conclusions regarding the morphology and kinematics of the CSE can be drawn.