

The Stellar Halos around Galaxies ESO Garching, 23-27 February, 2015

The origins of the Ultra Compact dwarfs in the Halo of NGC1399

Karina Voggel PhD Student @ESO Michael Hilker, Tom Richtler

What are UCDs?

- Objects in the "blue" and/or "green" box
- Sizes between 3-100pc
- * $-14 < M_V < -9$
- No coherent definition
 available as their nature
 is unclear.

What are the origins of UCDs?

Two possible formation channels:

- 1. The high mass end of the GC luminosity function
- 2. The stripped nuclei of dwarf Elliptical galaxies

->If UCDs are stripped dE galaxies they are tracers of the buildup of the stellar halo to which they lost their material

-> Goal: constrain the contribution of each formation channel to the final luminosity function of UCDs with new strategies

The Stripping Scenario

Voggel et al. in prep. (Simulation tracks based on Pfeffer&Baumgardt (2013))

Constraining Formation Channels

- * Comparing the properties of large UCD sample to GCs/nuclei:
 - Spatial Distribution
 - Size-magnitude relation
 - metallicity distribution
- * Single UCDs
 - color and magnitudes
 - velocity dispersion to constrain dynamical mass
 - surface brightness profiles / tidal features
 - resolving the stellar populations

Constraining Formation Channels

- * Comparing the properties of large UCD sample to GCs/nuclei:
 - * Spatial Distribution
 - Size-magnitude relation
 - metallicity distribution
- * Single UCDs
 - color and magnitudes
 - velocity dispersion to constrain dynamical mass
 - surface brightness profiles / tidal features
 - resolving the stellar populations

Constraining Formation Channels

- * Comparing the properties of large UCD sample to GCs/nuclei:
 - * Spatial Distribution
 - Size-magnitude relation
 - metallicity distribution
- * Single UCDs
 - color and magnitudes
 - velocity dispersion to constrain dynamical mass

surface brightness profiles / tidal features

resolving the stellar populations

The Fornax cluster

Spatial Distribution of UCDs and GCs

- Spatial distribution of GCs (black) and UCDs
 (blue) around NGC1399,
 the central Fornax galaxy
- All UCDs are confirmed members of the Fornax cluster
- Wide field sample of GCs and UCDs (Dirsch et al. 2003)
- Three smaller FORS2
 fields with photometry
 on 109 UCDs in good
 0.6" seeing conditions

Voggel et al. to be submitted

Spatial distribution of GCs around NGC1399

- Projected surface density profiles around NGC1399
- Top panel: GC sample (red line) and UCD sample(green)
- Solid lines: Fitted power law to the surface density

Spatial distribution of GCs around NGC1399

- Projected surface density profiles around NGC1399
- Top panel: GC sample (red line) and UCD sample(green)
- Solid lines: Fitted power law to the surface density
- Bottom panel: for the blue and red GC population separately
- Red population steeper and more centrally concentrated than the blue component

What happens to the GCs of a dE during stripping?

GC system of dEs: Lotz et al. (2001, 2004) Dynamical Friction: Arca-Sedda & Capuzzo-Dolcetta (2014), Capuzzo-Dolcetta,(1993)

Spatial Clustering of GCs around UCDs

- * Is the surface density of GCs around UCDs systematically higher than what is expected from the main distribution of the GCs in the halo?
- -> We find a systematic *average* overdensity within 500pc for all GCs and the colour separated samples
- -> Red GCs are correlated stronger with UCDs than blue ones

Surface Brightness Profiles of UCDs

 Studied detailed structural composition of 108 UCDs in the halo of NGC 1399
 by fitting several profiles with GALFIT

Luminosity Function of UCDs and GCs

- Luminosity Function of UCDs in the FORS fields (blue)
- GCLF of NGC1399 from
 Villegas et al. 2010 in
 dashed green
- For the 24 objects that showed very nearby point sources (r<200pc) we measured their magnitude after subtracting the UCD model
- Histogram of companion sources to the UCDs in black

Surface Brightness Profiles of UCDs

- Studied detailed structural composition of 108 UCDs in the halo of NGC 1399
 by fitting several profiles with GALFIT
- * 16 UCDs (14.8%) are extended above the resolution limit of ~23pc when fitted in a single Sersic fit
- Fitted a core+envelope model with fixed 10pc King core and a Sersic envelope

Tidal tails around UCDs

- Two large tidal tails detected with
 ~350pc radial extension found around
 UCD in Fornax
- high relative radial velocity v=1074km/ s compared to NGC1399 with v=1425km/s
- In total 18 objects show stripping evidence. Which agrees with predictions from Pfeffer et al. (2014) which expect 21.19^{+10.41}-8.95 stripped nuclei for the surface of our FORS fields

—> Direct observation of the transformation of a dE galaxy into a UCD?

Summary

- * GCs are significantly more common at 500pc around UCDs compared with what is expected from the global distribution -> UCDs and GCs are spatially correlated
- Large UCDs well fitted with Sersic profiles. When decomposing into two components, the envelop lies in between galaxy and star cluster branch in size magnitude space.
- * First direct evidence for UCD formation through tidal stripping.
- * 16.67% of our UCDs have direct stripping evidence which is in agreement with predictions from simulation and a lower limit for the contribution of the stripped nuclei UCD formation channel.
 - -> UCDs can trace the buildup of the Galactic Halo