Stellar Halos of Early-Type Galaxies Wide-field spectroscopy with the Mitchel Spectrograph

Nicholas Boardman¹

Collaborators: Anne-Marie Weijmans¹, Remco van den Bosch² ¹School of Physics and Astronomy, University of St Andrews, UK ²Max Planck Institute for Astronomy, Heidelberg, Germany

Outline

Background

Sample & Instrument

• First results

NGC 3998. From SDSS.

Galaxy Classification

"Early-type galaxies"

Galaxy Classification

- ATLAS3D (Cappellari et al. 2011)
 - Large, volume-limited survey; 260 nearby ETGs
 - Includes IFU observations with SAURON
 - Observations out to \sim 1 half-light radius (R_e)
 - Early-type galaxies "fast rotators" (FRs) or "slow rotators" (SRs) (Emsellem et al. 2007; 2011)

Examples

• NGC 4733 – slow rotator

SDSS

• NGC 680 – fast rotator

Cappellari et al. 2011

Cappellari et al. 2011

How do they form?

- Rapid size evolution observed for z < ~2 – Eg: van Dokkum et al. 2010
- FR/SR dichotomy observed in local ETGs

Suggests a two-phase formation process

Eg: Oser et al. 2010, Oser et al. 2012, Wu et al. 2014

Two-phase formation model

- 1st phase: formation of central bulge
 - Gas-rich major mergers, gas inflows, etc
 - z > 2
- 2nd phase: slow growth of galaxy
 - Largely from dry minor mergers
 - z < ~3
- Precise histories vary between galaxies
- Evidence from both simulations (eg: Oser et al. 2010) and observations (eg: Forbes et al. 2011)

Some problems

- Distant and local ETGs assumed to be from same population
 - Not necessarily true...
- Apparent connection between FRs and spirals
 - Eg: Van den Bergh, 1976, Kormendy & Bender 2012, Cappellari 2013
 - Suggests passive evolution from spirals to FRs

Further observations needed

Two-phase model - predictions

- Transitions expected past ~1 R_
 - Stellar kinematics, populations
- Formation of bulge; affects inner parts
 - Rotational orbits
 - Stellar population gradients
 - Eg, Hoffman et al. 2010

3 R Hoffman et al. 2010

- Dissipationless accretion; affects outer parts
 - Radial orbits
 - "Washing out" of population gradients
 - Eg, Oser et al. 2010

Two-phase model - predictions

- ATLAS3D provides high-quality IFU data out to ${\rm ~2R}_{\rm e}$
- To probe for expected transitions, must look beyond this.
- Wide-field spectroscopy needed

The Instrument

- The Mitchell Spectrograph, formerly VIRUS-P
- 246 fibres (diameter 4"), covering a 107" X 107" field of view
- Ideal for studying galaxies' faint outer regions

The sample

- 12 ETGs from ATLAS3D sample
- Selected for detection in HI
 - For dark matter work
- Observed with Mitchell Spectrograph
 - Wavelength range of 4800-5400Å
 - Average spectral resolution 1.4Å FWHM

Coverage

Stellar Kinematics

- Obtained using penalized PiXel Fitting (pPXF; Cappellari & Emsellem, 2004)
- Galaxy spectra fitted using sets of template stars

- NGC 3998
- Central fiber
- S/N = 336

Stellar Kinematics

- Obtained using penalized PiXel Fitting (pPXF; Cappellari & Emsellem, 2004)
- Galaxy spectra fitted using sets of template stars

- NGC 3998
- Outer spectral bin
- r ~ 2.5 R_e
- S/N = 38

Stellar Kinematics

Kinematics errors

- Obtained using re-simulations with random noise
- Example: NGC 3998

Angular momentum

- Use λ_R parameter as a proxy,
- Describes velocity structure (Emsellem et al. 2007)
 - Fast rotators/slow rotators
- Differentiates between between small and large kinematic structures

$$\lambda_{R} \equiv \frac{\left\langle R | V | \right\rangle}{\left\langle R \sqrt{V^{2} + \sigma^{2}} \right\rangle}$$

Angular momentum

- For FRs: no clear difference between SOs (blue) and Es (red)
- No sudden drops beyond 1 R_e
 - No clear transitions

Summary

- Two-phase formation model; expect evidence beyond ~1R_e
- Observed 12 ETGs with Mitchell Spectrograph
- Data reaches 3 R_e in many cases
- No evidence of two-phase formation from velocity or dispersion
- Next steps: orbit modelling (van den Bosch et al. 2008), stellar populations, dark matter

Some problems

- Distant and local ETGs assumed to be from *same population*
 - Not necessarily true...
- Apparent connection between FRs and spirals

Gas kinematics

- Ionised gas intensity/kinematics from IFU data
- Extracted with GANDALF code (Sarzi et al, 2006)
- Doesn't always follow stellar distribution
- Example: NGC 3998

Dark matter

- Dark matter constrained via Jeans Anisotropic MGE modelling (JAM; Cappellari, 2008)
- Uses velocity and velocity dispersion

$$V_{RMS} = \sqrt{V^2 + \sigma^2}$$

• NGC 3998

Dark matter

- Dark matter constrained via Jeans Anisotropic MGE modelling (JAM; Cappellari, 2008)
- Uses velocity and velocity dispersion

$$V_{RMS} = \sqrt{V^2 + \sigma^2}$$

What next?

- No obvious transitions in velocity or dispersion beyond ~1R_e
- Next step: higher kinematic moments.
- Example: kurtosis (h₄)

h4 = 0 plot here

 $- h_4 = 0$

- Will use triaxial Schwarzschild modelling
 - van den Bosch, 2008.

What next?

- No obvious transitions in velocity or dispersion beyond ~1R_e
- Next step: higher kinematic moments.
- Example: kurtosis (h₄)

h4 > 0 plot here

 $-h_4 > 0$; excess of radial orbits

- Will use triaxial Schwarzschild modelling
 - van den Bosch, 2008.

What next?

- No obvious transitions in velocity or dispersion beyond ${\rm \sim}1R_{\rm e}$
- Next step: higher-order kinematics and orbit modelling
- Example: kurtosis (h₄)

h4 < 0 plot here

- $h_4 < 0$; excess of tangential orbits

- Will use triaxial Schwarzschild modelling
 - van den Bosch, 2008.