

The outer stellar halo of NGC 3115

Mark Peacock, Jay Strader, Aaron Romanowsky, Jean Brodie

Baryons at low density 2015, ESO HQ

25th February 2015

Overview

- Resolved photometry of RGB stars in NGC 3115's halo
 - HST observations
 - CMDs & Metallicity distribution
 - Radial trends
- Comparison to globular clusters & their use as bright chemo-dynamical tracers of stellar populations
- Comparison to other galaxy halos

Why NGC3115?

- Quite nearby (d = 10.2 Mpc)
- Early-type galaxy (S0)
- ✤ stellar mass ~ 10¹¹ M_o
- Has a strongly bimodal globular cluster (GC) system & GCs are thought to trace the underlying stellar population.
- a strongly bimodal GC system
 suggests there should be a
 corresponding bimodal stellar
 population
- We target the region where metal-poor GCs start to dominate
- Are GCs good tracers? We can test this.

NGC3115 observations

- Three HST fields:
 @ 19, 37, 54 kpc
- Two filters:
 ACS F606W (V band)
 WFC3-IR F110W
 (spans Y & J bands)

The observed CMDs

galactocentric radius (along minor axis)

Dartmouth isochrones (Dotter ea. '08)

10 Gyr, $[\alpha/Fe] = 0.4$, [Z/H] = -2.2, -1.9, -1.6, -1.3, -1.0, -0.7, -0.4, -0.1, +0.2

MDF of NGC3115's stellar halo

 Metal-poor population observed, peaked at [Z/H] ~ -1.3

Radial variations

Ň

Comparison to the globular cluster system

Radial variations

Radial variations

GCs vs. Halo stars

 Metal rich and poor populations are similar

 Metal poor GCs are much higher fraction of the halo than stars.

Stellar density profile

Metal-rich [Z/H] > -0.95Metal-poor [Z/H] < -0.95

Best fit power laws 15 - 55 kpc: $\alpha_{rich} = -2.7$ $\alpha_{poor} = -3.0$ (flatter)

The metal poor component: Stellar halo mass = $2 \times 10^{10} M_{\odot}$

(14% of total stellar mass)

Stellar density profile

Ratio of metal-poor to -rich stars increases with radius

- similar variation observed with the GCs

Fraction of metal-poor GCs much larger than ratio of metal poor stars

Comparison to other galaxies

- Other stellar halos:
 - * NGC3379 (Harris ea. '07)
 - * NGC5128 (Rejkuba ea. '14)
 - Milky Way (Carollo ea. '10)
 - * M31 (Ibata ea. '14)

Summary: NGC 3115's halo

✤ From 15 - 60 kpc (6 - 23 r_e) we find:

- the peak in the MDF decreases from [Z/H] -0.5 to -0.65 and the mean metallicity decreases from -0.65 to -0.8
- a distinct lower metallicity population in two of the fields, peaked at [Z/H] ~ -1.3
- the metal-poor population has a flatter profile than the metal-rich
- * The metal-poor "halo" population's mass estimated as 2×10^{10} M $_{\odot}$ (14% of the total mass)
- The metal-rich and -poor GC density profiles and metallicities are consistent with the underlying stellar population (but ratios are different).
- We only sample a small region of the halo it's important to compare such work with surface brightness photometry to investigate substructure.