Tidal Stream Morphology as an Indicator of Dark Matter Halo Geometry:

The Case of Palomar 5

Sarah Pearson (Columbia University)

arXiv: 1410.3477 Collaborators: A. Küpper, K. V. Johnston, A. Price-Whelan

The shape of dark matter halos

LCDM predicts triaxial dark matter halos

Observations inconclusive

In our galaxy we can take advantage of our 3D view of stellar streams

Via Lactea II, Diemand+ 2008

Law & Majewski 2010

SDSS DR8 / Bonaca, Giguere, Geha

Northern Sky

SDSS DR8 / Bonaca, Giguere, Geha

Finding Pal 5's orbit

Two different potentials - spherical halo vs. triaxial halo

We need:

- radial velocities (Odenkircken et al. 2002, 2009)
- distance to cluster (Dotter et al. 2011)
- position of cluster (Abell 1955)
- proper motions:

Finding Pal 5's orbit

Two different potentials - spherical halo vs. triaxial halo

We need:

- radial velocities (Odenkircken et al. 2002, 2009)
- distance to cluster (Dotter et al. 2011)
- position of cluster (Abell 1955)
- proper motions:
 poorly constrained

Streakline method (Küpper et al 2012)

Comparing to observations

Positions

Radial velocities

Odenkirchen et al. 2009 Kuzma et al. 2015

Comparing to observations

Positions

Radial velocities

In each potential:

I. Run grid of streakline models with various proper motions

2. Find combination of proper motions that reproduces the positions (then also radial velocities) of the Pal 5 stream best

3. Run N-body simulation of this best model

Palomar 5 in model of potential from Law & Majewski 2010

Positions only

Pearson et al. 2015

Palomar 5 in model of potential from Law & Majewski 2010

Positions + radial velocities

Pearson et al. 2015

Pal 5 can not be reproduced within model of potential from Law & Majewski 2010 Pal 5 can not be reproduced within model of potential from Law & Majewski 2010

> Vera-Ciro & Helmi 2013 Debattista+ 2013 Gomez, Besla et al. 2015

Palomar 5 in spherical halo (+disk +bulge)

Pearson et al. 2015

No need for triaxiality to reproduce Pal 5's properties

No need for triaxiality to reproduce Pal 5's properties

Butzky+ 2015 Vera-Ciro+ 2011

Stream-fanning - what is it?

Due to nature of orbits?

Due to triaxiality of potential?

Pearson et al. 2015

Stream-fanning - what is it?

Due to nature of orbits?

Due to triaxiality of potential?

Pearson et al. 2015

Stream-fanning - what is it?

Due to nature of orbits?

Due to triaxiality of potential?

Both?

Pearson et al. 2015

Examples of stream-fanning

Ngan+ 2014, eprint

Examples of stream-fanning

Fardal+ 2014, eprint

Ngan+ 2014, e

Density cuts - do we not see it due to low density?

Density cuts - do we not see it due to low density?

Density cuts - do we not see it due to low density?

Density cuts - do we not see it due to low density?

RA [deg]

Ophiuchus Stream: Bernard et al. 2014, Sesar et al. 2015

What can we learn from stream-fanning?

The lack of stream-fanning could be powerful potential probe

Thin long streams probably inhabit stable regions of sky

Summary

Morphology of streams can help us infer the shape of the galactic potential

No need for triaxiality in inner parts of halo: we should model streams simultaneously

Lack of stream-fanning could be a powerful potential probe (see future work: Price-Whelan et al, in prep)

arXiv: 1410.3477