The dynamics of tidal tails (or how to do cosmology with the Galaxy)

Amina Helmi

university of groningen faculty of mathematics and natural sciences

kapteyn astronomio: institute

Testing the hierarchical paradigm. I. Mergers

 Stellar halo contains direct imprints of merger history

 Tidal streams/substructures
 We need to find them and understand (model) their behaviour

- Were mergers important for Milky Way?
- How often and when did they happen?
- What do they tell us about the building blocks? What were their properties?

Testing the hierarchical paradigm. II Is this "picture" correct?

Are galaxies like the Milky Way embedded in dark matter halos like those predicted by the cosmological model?

Testing the hierarchical paradigm. II Is this "picture" correct?

 Are galaxies like the Milky Way embedded in dark matter halos like those predicted by the cosmological model?

Testing the hierarchical paradigm. II Is this "picture" correct?

- Are galaxies like the Milky Way embedded in dark matter halos like those predicted by the cosmological model?
- How much dark matter is there?
 - how is it distributed? Shape, density profile, granularity, time-evolution
 - what is the dark matter?

The Gaia revolution: starting now!

Gaia will measure positions and motions of stars for 10^9 stars (10,000 x larger than predecessor); over a volume 100,000 larger; 1,000 more precisely \rightarrow transformational

- •Simultaneous astrometry, photometry, spectroscopy
- •Complete to G = 20 (V = 20-22),
- G = 16 for spectroscopy
- •Whole sky already observed!
- •First data release in mid-2016 (positions + G magnitude)
- •DR2 in Jan 2017: full phase-space

up to 21 million objects/deg² By Jan. 2015, 16 billion photom/astrom transits, **I.6** billion spectroscopic

(parallax)(BP/RP integrated)(radial velocity)3 to 12 $5-14 \ \mu as$ 4 mmag3 to 12.31 km s ⁻¹ 1524 \ \mu as4 mmag15.215 km s ⁻¹ 20540 \ \mu as60 (RP) - 80 (BP) mmagCalculations by: Airbus DS, D, Katz, C, Jordi L, Lindegren, L de Bruijne	V magnitude	Astrometry	Photometry	Spectroscopy
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	(parallax)	(BP/RP integrated)	(radial velocity)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 to 12	5–14 μ as	4 mmag	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 to 12.3			1 km s ⁻¹
15.2 15 km s ⁻¹ 20 540 μ as 60 (RP) – 80 (BP) mmag Calculations by: Airbus DS, D. Katz, C. Jordi, L. Lindegren, J. de Bruijne	15	24 μ as	4 mmag	
20 540 μas 60 (RP) – 80 (BP) mmag Calculations by: Airbus DS, D, Katz, C, Jordi, L, Lindegren, L de Bruijne	15.2			15 km s^{-1}
Calculations by: Airbus DS, D. Katz, C. Jordi, L. Lindegren, J. de Bruijne	20	540 μ as	60 (RP) – 80 (BP) mmag	
		C	alculations by: Airbus DS, D. Katz, C. J	ordi, L. Lindegren, J. de Bruijne
b-date information always at:				

esy of ony า & DPAC

"Image of the week" http://www.cosmos.esa.int/web/gaia/

Back to streams

Streams in physical space

A single object can give rise to multiple, spatially crossing streams

We can speak of leading or trailing streams if mapping is close to continuous (connect the pieces)

A priori we might not know if two structures/ streams in space have the same parent

Streams in action-angle space

- Action-angle evolution is simple: $\theta = \theta_0 + \Omega(\mathbf{J}) \mathbf{t}$ $\mathbf{J} = \mathbf{J}_0$
 - streams spread out in angle
 - actions are adiabatic invariants
- Behaviour is very simple in <u>action-angle space</u>
 - difficulty is to find actions/angles for any non-spherical potential (Bovy 2014; Sanders & Binney 2013, 2014)
 - Caveat: assume stars feel only host after released
- Stars from same object should be maximally clustered in action-space in right potential (talk by Sanderson)
 - even if potential changed with time

Sanderson et al. 2015

How do we understand the evolution?

Principle:

Follow *df* evolution in action-angle space

$$\Delta \theta_i \sim \Delta \Omega_i t \sim \frac{\partial \Omega_i}{\partial \mathbf{J}} \Delta \mathbf{J} \ t$$

 $\Delta \theta = \mathbf{H} \ \Delta \mathbf{J} \ t$

Predict properties in observable space:

- Perform local linear coordinate transformation to (x,v)
- Determine the width, extent and velocity dispersion along a stream as f(t)

-1elmi & White (1999)

Evolution of streams in a spherical potential

spatial properties

velocity dispersion

Helmi & Gomez 2007

- Stream elongated along direction of motion, and thicker in plane of motion
- Width of stream normal to plane of motion is ~ constant (spherical pot.)
- Velocity dispersion decreases as I/t
- Density decreases as 1/t²

(conservation of phase-space density)

(2D problem; axisym or triaxial 1/t³)

Streams in cosmological simulations?

Cosmological simulations show similar behaving streams
No strong chaos, power law rather than exponential divergence of orbits

(poster Maffione)

Aq-A

50

100

Inner/nearby stellar halo in Aquarius

- Few objects contribute here: 75% of stars near Sun from 3-5 parents
- Memory in kinematics (despite "chaotic" build-up)
 - ~ 400 streams crossing Solar neighbourhood
 - Should be identifiable with Gaia

Streams and the potential

 Computation of angles, actions and frequencies depends on potential assumed

$$\Delta \theta_r \sim \Delta \Omega_r t \qquad \Delta \theta_\phi \sim \Delta \Omega_\phi t$$
$$\frac{\Delta \theta_r}{\Delta \theta_\phi} = \frac{\Delta \Omega_r}{\Delta \Omega_\phi}$$

• In true potential, streams on straight lines with same slope in angle and in frequency space (Sanders & Binney 2014)

Streams and time-evolution

- What are the signatures of time-evolution? Can it be measured?
- Model growth of a spherical halo:
 - inside out, cosmological mass-growth $M \sim \exp(-a_g z)$
 - doubles its mass with orbits considered
 - numerical simulations and analytic formalism based on A-A variables
- Different progenitors + different orbits

Buist & Helmi, 2015

Numerical simulations: imprints of time-evolution

- Precession in orbital plane differs and misalignment is seen, ±10deg
- To see impact of time evolution: need long streams, preferably on radial orbits

Analysis in action-angle space

- With time-dependence one cannot use original A-A variables
- Actions are adiabatic invariants (depending on orbit)
- Frequencies and angles are not
- Angles:

- With present-day potential, compute angles and frequencies
- For an ensemble of particles, streams no longer on <u>same</u> straightlines in angle and in frequency space

$$\begin{split} \dot{J}_i &= -\frac{\partial H'}{\partial \theta_i} = -\dot{\alpha} \frac{\partial}{\partial \theta_i} \frac{\partial W}{\partial \alpha} (\mathbf{J}, \boldsymbol{\theta}, \boldsymbol{\alpha}), \\ \dot{\theta}_i &= \frac{\partial H'}{\partial J_i} = \Omega_i (\mathbf{J}, \boldsymbol{\alpha}) + \dot{\alpha} \frac{\partial}{\partial J_i} \frac{\partial W}{\partial \boldsymbol{\alpha}} (\mathbf{J}, \boldsymbol{\theta}, \boldsymbol{\alpha}). \end{split}$$

$$\left\langle \dot{\theta}_{i} \right\rangle \approx \Omega_{i}(\mathbf{J}, \boldsymbol{\alpha}) + O(\dot{\boldsymbol{\alpha}}^{2}, \ddot{\boldsymbol{\alpha}}).$$

$$\theta_i(t) \approx \theta_i(0) + \int_0^t \Omega_i(\mathbf{J}, \boldsymbol{\alpha}(t)) dt,$$

$$\frac{\Delta \theta_r}{\Delta \theta_\phi} = \frac{\int \Delta \Omega_r dt}{\int \Delta \Omega_\phi dt} \neq \frac{\Delta \Omega_r}{\Delta \Omega_\phi}$$

• Differences are small, $\sim 0.01 - 0.025$ depending on growth rate

Measurable?

- Error convolution in observable space: $\varepsilon_{los} \sim 10$ km/s, $\varepsilon_{\pi} \sim \varepsilon_{\mu} \sim 1\%$
- Streams behave well, slope difference is still measurable for most experiments
 - frequency space more strongly affected by errors
 - PASS if difference between original and error-convolved slope < 0.005

Measurable with more realistic errors?

More streams can be used and growth can be measured

Summary

- Dynamics of stellar streams best understood using action-angle
 - Streams on straightlines in angle and in frequency space if true potential
 - Constrain Galactic potential parameters
 - Time-evolution imprinted in differences in straightlines slopes
 - Appear to be measurable in foreseable feature

• What's next

- Finding hundreds of streams predicted by LCDM in Gaia
- Formation of the stellar halo (in-situ vs accreted, timescales, progenitors)
- Better understanding of signatures of subhalos on streams as ultimate test of LCDM

Thank you!