

Nearby Halo Streams

Carl J. Grillmair 15 April, 2015

Current Tally: 21 Nearby Halo Streams

Table 1.1 Currently Known Halo Streams

Designation	Progenitor	Known Extent	Distance kpc	V _{hel} km s ⁻¹	[Fe/H]	Selected References
Sagittarius Stream	Sagittarius dSph	Circum-sky	7-100	(-200, +200)	(-1.15, -0.4)	Ibata et al. 1994, Mateo et al. 1998, Alard 1996, Toten & Irwin 1998, Ibata et al. 2001a, b, Majewski et al. 2003, Martinez-Delgado et al. 2004, Vivas et al. 2005, Belokurov et al. 2006, Fellhauer et al. 2006, Belokzini et al. 2006, Chou et al. 2007, Law et al. 2009, Law & Majewski 2010, Keller et al. 2010 Garlin et al. 2012a, Korosov et al. 2012
Virgo Stellar Stream	NGC 2419?	$180^\circ < R.A. < 195^\circ$ $-4^\circ < \delta < 0^\circ$	19.6	128	-1.78	Vivas et al. 2001, Duffau et al., 2006, Newberg et al. 2007, Duffau et al. 2014
Palomar 5	Palomar 5	$225^{\circ} < R.A. < 250^{\circ}$ $-3^{\circ} < \delta < 8.5^{\circ}$	23	-55	-1.43	Odenkirchen et al. 2001, 2003, 2009, Rockosi et al. 2002, Grillmair & Dionatos 2006a, Carlberg, Grillmair, & Hetherington 2012
Monoceros Ring	dG?	$\begin{array}{l} 108^{\circ} < {\rm R.A.} < 125^{\circ} \\ -3^{\circ} < \delta < -41^{\circ} \end{array}$	≈ 10.5	≈ 100	-0.8	Newberg et al. 2002, Yanny et al. 2003, Ibata et al. 2003, Rocha-Pinto et al. 2003, Penarrubia et al. 2005, Li et al. 2012 Slater et al. 2014
NGC 5466	NGC 5466	$\begin{array}{c} 182^{\circ} < {\rm R.A.} < 224^{\circ} \\ 21^{\circ} < \delta < 42^{\circ} \end{array}$	17	108	-2.2	Belokurov et al. 2006a, Grillmair & Johnson 2006, Fellbauer et al. 2007b. Lux et al. 2012
Orphan Stream	dG?	$\begin{array}{l} 143^{\circ} < {\rm R.A.} < 165^{\circ} \\ -17^{\circ} < \delta < +48^{\circ} \end{array}$	20-55	(95,240)	-2.1	Grillmair 2006a, Belokurov et al. 2012 Fellhauer et al. 2007a, Sales et al. 2008, Newberg et al. 2010, Sesar et al. 2013 Graemet el. 2013
GD-1	GC?	$\begin{array}{l} 134^{\circ} < {\rm R.A.} < 218^{\circ} \\ 14^{\circ} < \delta < 58^{\circ} \end{array}$	7 - 10	(-200,+100)	-2.1	Grillmair & Dionatos 2006b, Willett et al. 2009, Koposov, Rix, & Hogg 2010, Grillmair & Grillmair 2013
AntiCenter Stream	dG?	$\begin{array}{c} 121^{\circ} < R.A. < 130^{\circ} \\ -3^{\circ} < +63^{\circ} \end{array}$	≈8	(50, 90)	-0.96	Grillmair 2005b, Grillmair, Carlin, & Majewski 2008, Li et al. 2012
EBS	GC?	$132^{\circ} < R.A. < 137^{\circ}$ $-3^{\circ} < \delta < 16^{\circ}$	10	(71, 85)	-1.8	Grillmair 2006b, Grillmair 2011, Li et al. 2012
Acheron	GC?	$232^{\circ} < R.A. < 258^{\circ}$ $3^{\circ} < \delta < 20^{\circ}$	3.5 - 3.8		-1.7?	Grillmair 2009
Cocytos	GC?	$197^{\circ} < R.A. < 257^{\circ}$ $8^{\circ} < \delta < 30^{\circ}$	11		-1.7?	Grillmair 2009
Lethe	GC?	$176^{\circ} < R.A. < 252^{\circ}$ $22^{\circ} < \delta < 37^{\circ}$	13		-1.7?	Grillmair 2009
Styx	Bootes III?	$201^{\circ} < R.A. < 250^{\circ},$ $21^{\circ} < \delta < 31^{\circ}$	45		-2.2?	Grillmair 2009
Cetus Polar Stream	NGC 5824?	$19^{\circ} < R.A. < 37^{\circ}$ $-11^{\circ} < \delta < +39^{\circ}$	24 - 36	(-200, -160)	-2.1	Newberg, Yanny, & Willett 2009, Yam et al. 2013
Pisces/ Triangulum	GC?	$21^{\circ} < R.A. < 24^{\circ}$	35	120	-2.2	Bonaca et al. 2012b, Martin et al. 2013, Martin et al. 2014
Alpheus	NGC 288?	$23^{\circ} < R.A. < 28^{\circ}$ = 60° < 8 < 45°	1.6 - 2.0		-1.0?	Grillmair 2013
ATLAS stream	Pyxis?	-69 < 0 < 45 $18^{\circ} < R.A. < 30^{\circ}$ $-32^{\circ} < \delta < -25^{\circ}$	20		-1.4?	Koposov et al. 2014
PAndAS MW Stream	dG?	$0^{\circ} < R.A. < 22^{\circ}$ $40^{\circ} < \delta < 48^{\circ}$	17	127	-1.5?	Martin et al. 2014
Hermus	GC?	$241^{\circ} < R.A. < 254^{\circ}$ $5^{\circ} < \delta < 50^{\circ}$	18.5		-2.3?	Grillmair 2014
Hyllus	GC?	$245^{\circ} < R.A. < 249^{\circ}$ $11^{\circ} < \delta < 34^{\circ}$	20		-2.3?	Grillmair 2014
Ophiuchus stream	GC	$241^{\circ} < R.A. < 243^{\circ}$ -7.2° < $\delta < 6.7^{\circ}$	8 - 9.5	290	-1.95	Bernard et al. 2014, Sesar et al. 2015

Newberg & Carlin 2015

The Galactic Web

Recently Discovered Streams

Pisces/Triangulum Stream Bonaca et al. 2012 Alpheus Grillmair et al. 2013

ATLAS Stream Koposov et al. 2014

PAndAS MW Stream Martin et al. 2014

Hermus & Hyllus Grillmair 2014 Ophiuchus Stream Bernard et al. 2014

Hermus & Hyllus

η

Hermus in Blue Horizontal Branch Stars

-2.2 < [Fe/H] < -1.60 < Log g < 3.5 -0.23 < (g-r) ₀ < -0.1 b > 0 15.5 < dist < 21 kpc 80 < v_{qsr} < 130 km/s

Martin, C. et al, 2015, in prep.

The Anticenter Region

Li et al. 2012

The Anticenter region is much more complex than generally assumed.

The Galaxy's Initial Globular Cluster Population

13 globular cluster streams known:

Bound/semi-bound clusters still exist for Pal 5, NGC 5466, NGC 288.

Progenitors of GD-1, Acheron, Cocytos, Lethe, EBS, Pices, PAndAS MW stream, ATLAS stream, Hermus, & Hyllus apparently do not.

lf:

globular cluster orbits are oriented isotropically,
we are currently sensitive only to those streams oriented between 80° and 90° to our line of sight,
we have sampled ~one third of the sky to 50 kpc,
detected streams are 90° long or less, and
streams are visible over the lifetime of the Galaxy,
Then:

 $N_{\text{glob},0} = 164 + 10x9x3 = 434 \pm 100$

The Galaxy's Initial Globular Cluster Population cont'd

On the other hand, despite deliberate and focused searches, only two globular clusters are known to have lengthy tidal tails.

- (despite the fact that most globular clusters have power-law, extratidal extensions).
- Current crop of cold streams do not appear to be on highly eccentric orbits, so progenitors were not subject to extraordinary perigalatic shocking.
- Are the extended tidal tails of known globular clusters in some other quadrant of the sky? (e.g. near apogalacticon)
- Due to incomplete information and inaccurate Galactic potentials, have we been unable to match the cold streams to existing globular cluster progenitors?
- Were the progenitors of cold streams more loosely bound than presentday, surviving globular clusters?

Tip of the Iceberg

- Stars do not form alone.
- Groups, associations, clusters, and dwarf galaxies will all eventually be torn apart by Galactic tidal forces.
- It follows that stars not in clusters or dwarf galaxies must be in streams.
- Exceptions would include high velocity stars, pulsars, or any other objects that suffer very large ΔE, ΔL.
- →Expect a powerlaw stream distribution function similar to IMF of stellar clusters.

- The release of PS-1 should see a rapid and substantial increase in the number of known streams.
- PS-1 will also enable us to significantly lengthen known SDSS streams.
- Finally, as a completely independent data set, PS-1 will enable us to push much deeper in the regions of overlap between the SDSS and 3π surveys.

Distances to Streams

- Distance estimates to streams remain the Achilles Heel for measurements of the Galactic potential.
- Eyre & Binney have demonstrated technique of measuring "Galactic Parallax", which should greatly improve distance estimates when used with Gaia proper motions.
- Various transient surveys (LINEAR, PTF, Catalina) have now detected many thousands of RR Lyrae. These are now being used to get ~2% distances to the Sagittarius and Orphan streams with Spitzer (SMHASH).

Sesar et al. 2013

- New stream discoveries are now routine.
- We expect to find dozens of new streams in the next couple of years, and probably hundreds by the time the Gaia mission ends.
- Considerable efforts are now being devoted to more fully characterizing streams.
- We are slowly learning how to best use streams for probing both the halo and its constituents.