The Giraffe Inner Bulge Survey (GIBS)

...and the Legacy Value of VVV

Manuela Zoccali

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

HOW did this form?

The Galactic bulge

it is a bar, with a boxy/peanut shape

McWilliam & Zoccali (2010) [2MASS] Nataf et al. (2010) [OGLEII] Saito et al. (2011) [VVV] Wegg & Gerhard (2013) [VVV] Gonzalez, MZ et al. (2015)

The Giraffe Inner Bulge Survey

PI: MZ

~6500 stars on CaT +450 stars on HR13

LP 187.B-0909 130h with FLAMES

M. Zoccali, O. A. Gonzalez, S. Vasquez, V. Hill, M. Rejkuba, E. Valenti,
A. Renzini, A. Rojas-Arriagada, I. Martinez-Valpuesta,
C. Babusiaux, T. Brown, D. Minniti, and A. McWilliam

ઝ

×2 0

The Giraffe Inner Bulge Survey

ARGOS Field

 \bigcirc

0

O

B

+4 +2 0

ophilite

0

 \bigcirc

0

0.0

ઝ

A

longitude

LP 187.B-0909 130h with FLAMES

Giraffe Inner Bulge Survey (GIBS)

Targets: Red Clump (RC) stars, from VVV (+ optical, when available)

GIBS Kinematics: rotation curve

comparison with models : cylindrical rotation confirmed

MZ et al. (2014, A&A, 562, A66) Paper I

The Galactic bulge

it is a bar, with a boxy/peanut shape

McWilliam & Zoccali (2010) [2MASS] Nataf et al. (2010) [OGLEII] Saito et al. (2011) [VVV] Wegg & Gerhard (2013) [VVV] Gonzalez, MZ et al. (2015)

it rotates cylindrically (like a bar)

[BRAVA] Howard et al. (2009) [GIBS] MZ et al. (2014)

GIBS Kinematics: velocity dispersion

MZ et al. (2014, A&A, 562, A66) Paper I

The Milky Way vs other Spirals

The Milky Way vs other Spirals

The Galactic bulge

it is a bar, with a boxy/peanut shape

McWilliam & Zoccali (2010) [2MASS] Nataf et al. (2010) [OGLEII] Saito et al. (2011) [VVV] Wegg & Gerhard (2013) [VVV] Gonzalez, MZ et al. (2015)

it rotates cylindrically (like a bar)

[BRAVA] Howard et al. (2009) [GIBS] MZ et al. (2014)

it has a velocity dispersion peak at R<200 pc [GIBS] MZ et al. (2014)

The Galactic bulge

it is a bar, with a boxy/peanut shape

McWilliam & Zoccali (2010) [2MASS] Nataf et al. (2010) [OGLEII] Saito et al. (2011) [VVV] Wegg & Gerhard (2013) [VVV] Gonzalez, MZ et al. (2015)

it rotates cylindrically (like a bar)

[BRAVA] Howard et al. (2009) [GIBS] MZ et al. (2014)

it has a velocity dispersion peak at R<200 pc [GIBS] MZ et al. (2014) мhy ?

Milky Way demographics with the VVV Survey

160 million star CMD from CASU

Saito et al. (2012) DR1 Minniti et al. (2014)

Milky Way demographics with the VVV Survey

160 million star CMD from CASU

Saito et al. (2012) DR1 Minniti et al. (2014)

Giga CMD from PSF-fitting

Alonso-García et al. (2015, in prep)

Milky Way demographics with the VVV Survey

The bulge extinction map

Gonzalez et al. (2012, A&A, 543, 13)

The bulge extinction map

Gonzalez et al. (2012, A&A, 543, 13)

The completeness map of the inner bulge at the RC mag from PSF-fitting photometry (DoPHOT)

The Stellar Density of the inner bulge based on RC stars from VVV

Valenti, MZ, et al. (2015, A&A submitted)

The Stellar Density of the inner bulge from VVV

stellar density follows velocity dispersion

Valenti, MZ, et al. (2015, A&A submitted)

The Galactic bulge

it is a bar, with a boxy/peanut shape

McWilliam & Zoccali (2010) [2MASS] Nataf et al. (2010) [OGLEII] Saito et al. (2011) [VVV] Wegg & Gerhard (2013) [VVV] Gonzalez, MZ et al. (2015)

it rotates cylindrically (like a bar)

[BRAVA] Howard et al. (2009) [GIBS] MZ et al. (2014)

it has a velocity dispersion peak at R<200 pc [GIBS] MZ et al. (2014) ...matched by a peak in stellar density [VVV] Valenti, MZ et al. (2015)

A fully empirical estimate of the bulge Stellar Mass

A fully empirical estimate of the bulge Stellar Mass based on RC stars from VVV Valenti, MZ, et al. (2015, A&A submitted) **RC** in VVV log N RC Jo

A fully empirical estimate of the bulge Stellar Mass based on RC stars from VVV Valenti, MZ, et al. (2015, A&A submitted) **RC** in VVV log N imes 58,600 RC Jo

A fully empirical estimate of the bulge Stellar MassValenti, MZ, et al. (2015, A&A submitted)based on RC stars from VVV

A fully empirical estimate of the bulge Stellar Mass

Valenti, MZ, et al. (2015, A&A submitted)

Stellar density profile and mass of the Milky Way Bulge from VVV data* A&A submitted

E. Valenti,¹ M. Zoccali,^{2,3} O. A. Gonzalez,^{4,5} D. Minniti,^{3,6,7} J. Alonso-García,^{8,3} E. Marchetti,¹ M. Hempel,² A. Renzini,⁹ M. Rejkuba,^{1,10}

$2(\pm 0.3) \times 10^{10} M_{\odot}$

in stars and remnants

Density Profile

Mass Profile

The Galactic bulge

it is a bar, with a boxy/peanut shape

McWilliam & Zoccali (2010) [2MASS] Nataf et al. (2010) [OGLEII] Saito et al. (2011) [VVV] Wegg & Gerhard (2013) [VVV] Gonzalez, MZ et al. (2015)

it rotates cylindrically (like a bar)

[BRAVA] Howard et al. (2009) [GIBS] MZ et al. (2014)

it has a velocity dispersion peak at R<200 pc[GIBS] MZ et al. (2014) ...matched by a peak in stellar density [VVV] Valenti, MZ et al. (2015)

it has a stellar mass of 2x10¹⁰ M

[VVV] Portail et al. (2015) [VVV] Valenti, MZ et al. (2015)

... back to the GIBS spectra [Fe/H] = -1.17~ 6500 RC stars observed in CaT 2.5 2.0 [Fe/H]=-0.48 Normalized flux + const 1.5 |[Fe/H]=+0.18 1.00.5 0.0 8400 8450 8500 8650 8700 8550 8600 8750 Wavelength (A)

A new CaT-[Fe/H] calibration obtained from bulge giants

Vásquez, MZ et al. (2015, A&A, 580, 121)

The Photometric Metallicity Map for VVV Gonzalez et al. (2013, A&A, 543, 13) -0.03 4 -0.13 2 Galactic Latitude (b) 0 -0.24 [Fe/H] -2 -4 -0.34

The origin of the bulge metallicity gradient

the gradient is due to a different proportion of two stellar components

see also: MZ et al. (2008) Babusiaux et al. (2010) Hill et al. (2011) Ness et al. (2013)

Rojas-Arriagada et al. (2014)....Gaia ESO

The bulge 3D map from RR Lyrae

The Galactic bulge

it is a bar, with a boxy/peanut shape

McWilliam & Zoccali (2010) [2MASS] Nataf et al. (2010) [OGLEII] Saito et al. (2011) [VVV] Wegg & Gerhard (2013) [VVV] Gonzalez, MZ et al. (2015)

it rotates cylindrically (like a bar)

[BRAVA] Howard et al. (2009) [GIBS] MZ et al. (2014)

it has a velocity dispersion peak at R<200 pc[GIBS] MZ et al. (2014) ...matched by a peak in stellar density [VVV] Valenti, MZ et al. (2015)

it has a stellar mass of 2x10¹⁰ M

[VVV] Portail et al. (2015) [VVV] Valenti, MZ et al. (2015)

it has a mean metallicity gradient due to coexistence of bar + metal poor spheroid

Babusiaux...MZ.. et al. (2010) Hill...MZ... et al. (2011) [ARGOS] Ness et al. (2013) [VVV] Dékány et al. (2013) [GES] Rojas-Arriagada...MZ.. et al. (2014) [GIBS] MZ+ in prep

The MDF at high-resolution in 5 fields (GIRAFFE-HR)

The MDF at high-resolution in 5 fields (GIRAFFE-HR)

The Giraffe Inner Bulge Survey (GIBS) II. Metallicity distributions and alpha element abundances at fixed Galactic latitude *

O. A. Gonzalez¹, M. Zoccali^{2,3}, S. Vasquez^{2,3}, V. Hill⁴, M. Rejkuba^{5,6}, E. Valenti⁵, A. Rojas-Arriagada⁷, A. Renzini⁸, C. Babusiaux⁹, D. Minniti^{3,10,12}, and T. M. Brown¹¹

The Giraffe Inner Bulge Survey (GIBS) II. Metallicity distributions and alpha element abundances at fixed Galactic latitude *

O. A. Gonzalez¹, M. Zoccali^{2,3}, S. Vasquez^{2,3}, V. Hill⁴, M. Rejkuba^{5,6}, E. Valenti⁵, A. Rojas-Arriagada⁷, A. Renzini⁸, C. Babusiaux⁹, D. Minniti^{3,10,12}, and T. M. Brown¹¹

The Galactic bulge

it is a bar, with a boxy/peanut shape

McWilliam & Zoccali (2010) [2MASS] Nataf et al. (2010) [OGLEII] Saito et al. (2011) [VVV] Wegg & Gerhard (2013) [VVV] Gonzalez et al. (2015)

it rotates cylindrically (like a bar)

[BRAVA] Howard et al. (2009) [GIBS] Zoccali et al. (2014)

it has a velocity dispersion peak at R<200 pc [GIBS] Zoccali et al. (2014) ...matched by a peak in stellar density [VVV] Valenti et al. (2015)

it has a total mass of 2x10¹⁰ M

it has a mean metallicity gradient due to coexistence of bar + metal poor spheroid

alpha element ratios similar to thick disk but extending to much higher metallicities

[VVV] Portail et al. (2015) [VVV] Valenti et al. (2015)

Babusiaux [MZ] et al. (2010) Hill [MZ] et al. (2011) [ARGOS] Ness et al. (2013) [VVV] Dékány et al. (2013) [GES] Rojas-Arriagada [MZ] et al. (2014) [GIBS] MZ+ in prep

[....] [GIBS] Gonzalez et al. (2015)

ESO Please keep doing Public Surveys

ESO Please

keep doing

THANK YOU !

