Dynamical models of the Galactic Bulge based on survey data

Matthieu Portail, Christopher Wegg, Ortwin Gerhard and collaborators

ESO Rainbows on the Southern Sky, Wednesday October, 7th

MPE

Dynamical modeling of the Galactic B/P bulge

Wegg & Gerhard, MNRAS, 435, 1874 (2013)

Portail, Wegg, Gerhard & Martinez-Valpuesta, MNRAS, 448, 713 (2015)

Total mass and Dark Matter - IMF relation

Orbital structure of Box/Peanut bulges

+ Portail, Wegg & Gerhard MNRAS, 450, 66L (2015)

The 3D density of the Galactic bulge

- Deconvolution of magnitude distributions from the VVV survey using Red Clump stars as tracers
- The stellar density is proportional to Red Clump density for an old population

BRAVA kinematics

- BRAVA survey obtained radial velocity for about 10 000 M giants
- Provide mean line-of-sight velocity and dispersion in about 80 fields through the bulge

 We are now working on including data from more recent surveys (ARGOS & APOGEE)

Rich et al. (2007)

Dynamical modeling

Mass and IMF

Dynamical modeling – M2M method

 We evolve a near-equilibrium stellar disk embedded in different dark matter haloes.

M2M modeling of the Galactic Bulge

 We can recover the stellar mass required by the model to match the BRAVA dispersion in its dark matter halo.

Total mass of the bulge

• We measure the **total mass** in the bulge $\pm (2.2 \times 1.4 \times 1.2 \text{kpc})$ to be 1.84 10¹⁰ M_{\odot} 2.2 $\times 10^{10}$

- We find a systematic error on the total mass of less than 5%
- We have equally good models of the bulge with different dark matter fraction.

Mass and IMF

Dark matter – IMF relation

- We use the COBE/DIRBE K-band measurements, and correct for extinction using the extinction map from Wegg & Gerhard (2013)
- The Salpeter IMF can be ruled out, predicting a too large mass-to-light ratio
- Zoccali IMF imply about 40% dark matter in the bulge while the Calamida IMF imply only about 12%.

Orbital structure of Box/Peanut bulges

- In 2D, the bar is mostly made out of elongated orbits called x₁ orbits
- In 3D, x₁ becomes unstable and leads to the birth of the x₁ tree
- The simplest member of the x_1 tree is the banana orbits $(x_1 v_1)$

According to the literature, banana orbits form the backbone of Box/Peanut bulges.

Bananas orbits

Contopoulos & Barbanis (1994), Pfenniger&Friedeli (1991), Patsis' work

Orbital structure

Conclusion

Peanuts, brezels and bananas: food for thought on the orbital structure of the Galactic bulge

- Orbit classification based on frequency analysis
- The peanut shape is the sum of embedded peanuts
 Brezel orbits -> 3
- The bananas...
 - ... extend too far out to make the X-shape 📱
 - ... contain only a small fraction of the mass
- Stars do not always « stream along the arms of the X-shape »

Orbital structure

Bananas orbits

Conclusion

Work in progress

- Include more data from many surveys:
 - ARGOS
 OGLE
 GAIA-ESO
 - APOGEE
 GAIA
 ...
- Construct a dynamical model of the long bar data (VVV+UKIDSS+2MASS)

Parametric model from Wegg et al. (2015)

M2M fit

Orbital structure

Conclusion

- We made dynamical models of the Peanut shaped Galactic bulge using the **3D density of Red Clump stars** combined with stellar kinematics, in different dark matter halos.
- We measure the total mass of the bulge to be 1.84 10¹⁰ M_☉ with an accuracy <5% (systematics). Measured IMFs imply dark matter fraction in the bulge between 12% and 40% (Calamida IMF or Zoccali IMF)
- B/P bulges and the MW's bulge can be made by brezel orbits instead of the usually claimed banana orbits.