

Investigating the QSO environment with the spectra of the XQ-100 Legacy Survey

Valentina D'Odorico INAF – Osservatorio Astronomico di Trieste

<u>Prologue</u>

- ♦ All the work has been carried out by Serena Perrotta (SISSA – Trieste)
- ♦ The aim of the work is to use the narrow absorption lines in the XQ-100 spectra to characterize the QSO outflows and the QSO environment
- ♦ The main difficulty is to identify the intrinsic absorption lines (due to gas which is part of the AGN/host galaxy environment)
- \diamond This is still a work in progress!

QSO outflows

AGN unification model

- ♦ Massive outflows from the accretion disk region are necessary to decrease angular momentum and allow mass accretion to the SMBH;
- ♦ The same outflows could transfer thermal and mechanical energy to the ISM of the host galaxy (AGN feedback) and blow out material to the IGM.

QSO absorption spectra

Broad absorption lines (BAL): width > 2000 km/s

- Intrinsic nature;
- Originating in the accretion region;
- Expelled at very high velocity (up to ~0.1c, in this case 26,300 km/s);
- Detection rate ~23 % (Hewett & Foltz 2003)

Hamann et al. 2008

QSO absorption spectra

Broad absorption lines (BAL): width > 2000 km/s Narrow absorption lines (NAL): width < 500 km/s (often <50 km/s)

Intrinsic and intervening Intrinsic nature:

- Partial coverage;
- Time variability;
- High photoionization parameter;
- High metallicity

Associated absorbers: v_{shift} < 5000 km/s

Hamann et al. 2011

QSO absorption spectra

Broad absorption lines (BAL): width > 2000 km/s Narrow absorption lines (NAL): width < 500 km/s (often <50 km/s) Mini BALs: intermediate class (intrinsic)

Hamann et al. 2012

NALs in XQ-100: C IV sample

Velocity (km/s)

NALs in XQ-100: C IV and Si IV

- \diamond The excess in the number of absorptions extends to ~10,000 km/s
- $\diamond\,$ The detection rate of C IV in the range -5000 < v_{shift} < +1000 km/s is 72 %
- \diamond The detection rate of C IV in the range -10,000 < v_{shift} < -5000 km/s is 64 %
- \Rightarrow But for -10,000 < v_{shift} < +1000 km/s is again 72 %

NALs in XQ-100: intrinsic systems

First Evaluation: ionization status → presence of N V

- ♦ 45 % of C IV absorbers show associated N V
- ♦ The detection rate of N V in the range -5000 < v_{shift} < +1000 km/s is 26 %</p>
- ♦ Simon et al (2012) found 28 % with partial coverage in the same v range
- ♦ Misawa et al. (2007) found 33 % with partial coverage in the same v range

(Agafonova et al. 2005)

NALs in XQ-100: line ratios

Note that for non-saturated lines: $W_{1238}/W_{1548} \approx 0.52 N_{1238}/N_{1548}$

$$W_{1393}/W_{1548} \simeq 2.19 N_{1393}/N_{1548}$$

Size of the bullet → C IV equivalent width Triangles → Damped Lya Systems Squares → Upper limits

NALs in XQ-100: line ratios

QSO environment along and across los

NALs in XQ-100: covering fractions

NALs in XQ-100: covering fractions

0.2

0.0

 $\begin{array}{c} -5\times10^3 \\ dv_{shift} \ [km\,s^{-1}] \end{array}$

Summary

- Outflows in AGN can be related to the accretion process onto the central SMBH but also to the mechanism necessary to quench star formation in the host galaxy;
- Outflows are observed in absorption, absorbers are classified based on their velocity width (BALs, mini-BALs and NALs);
- ♦ We have studied NALs in the XQ-100 legacy survey with a sample of ~1000 C IV absorbers. We find:
 - an excess of absorbers in C IV and Si IV up to ~10,000 km/ s velocity shift from the QSO emission;
 - C IV detection rate of 72 % at v_{shift} < 5000 km/s;</p>
 - N V detection rate of 26 % at v_{shift} < 5000 km/s, proxy of intrinsic NAL rate;</p>
 - Strong evidence of a different ionization state close to the QSO along and across the LOS

(D'Odorico et al. 2004)

Work in progress

- Measurement of the column densities with the apparent optical depth method, detection of partial coverage and analysis of ion ratios;
- Analysis of some interesting systems in high resolution spectra (1 UVES proposal approved, 2 targets observed out of 4) using photoionization modelling

NALs in XQ-100: QSO luminosity

Brighter objects show more C IV observations

