UltraVISTA

James Dunlop University of Edinburgh

Marijn Franx, Olivier Le Fevre, Johan Fynbo, Henry McCracken, Bo Milvang-Jensen

VISTA: Paranal, Chile

VIRCAM: 67 Mega pixels (1.5 deg²)

~ 3-4 times more efficient than any other current near-infrared camera

UltraVISTA – planned as deepest public survey with VISTA

- Pls Dunlop, Franx, Le Fevre, Fynbo
- DEEP 0.73 sq. deg., Y=26.7, J=26.6, H=26.1, K=25.6 (1408 hr)
- WIDE 1.50 sq. deg., Y=25.3, J=25.2, H=24.7, K=24.2 (212 hr)
- Narrow-band survey, at 1.185 microns (z = 8.8 for Lyman-alpha) (180 hr)
- 1800 hours over 5 years started Jan 2010

Primary Motivation – galaxies at z = 7 - 9

Primary Motivation – galaxies at z = 7 - 9

Deep near-infrared imaging is essential for studying rest-frame UV

Deep **near-infrared** imaging also essential for good photo-zs galaxy stellar mass estimation, and the study of dusty galaxies

UltraVISTA is located in the COSMOS field, which has become the best degree-scale survey field in which to study galaxy formation and evolution

Broad-band and medium-band CFHTLS (D2), Subaru data, VLT, GALEX, Spitzer, Herschel, SCUBA2 (more than 25 imaging bands) Also a unique and large zCOSMOS spectroscopic sample (the ideal laboratory in which to perfect photometric redshift techniques)

UltraVISTA + CANDELS

Data Release 1: UltraVISTA survey paper: McCracken et al. 2012, A&A, 544, 156 (143 citations)

VISTA Stare

21 March 2012

Bad Astronomy

« Tennessee legislature boldly sets the science clocks back 150 years More M95 supernova news: progenitor found! »

An ultradeep image that's *full* of galaxies!

What happens when you take a monster 4.1 meter telescope in the southern hemisphere and point it at the same patch of sky for 55 hours?

This. Oh my, this:

e of an st one part to 'erse as

ESO's VISTA tele unremarkable pa of a huge collect astronomers wo well as for many

K_s Deep – DR1

K_s Ultra-Deep strip – DR2

Survey progress: exposure time

1054 hours /1642 awarded

Survey progress: execution time

1393 hours /1800 awarded

New UltraVISTA Data Release 3 (DR3)

DR3 contains all data taken between 5 December 2009 and July 2014, i.e. seasons 1 through 5

39944 images, 1147 Obs, 890 hours of exposure DR3 now goes much deeper on the ultra-deep strips:

Y	J	Η	K _s	NB
26.1	25.8	25.5	25.3	24.5

Over 0.73 deg²

AB mag, 1.8 arcsec diameter apertures, 5-sigma

Seeing FWHM ~ 0.75 arcsec

Y+J+K colour zoom in a DR3 deep strip

Cross talk.....

43.2 arcsec separation ~128 pixels on native scale

~15 mag fainter than star brightest stars in field ~10 mag, so starts to come in at ~25 mag !

cf WFCAM where cross talk was at 5 mags fainter than star

So VIRCAM actually surprisingly good (Mike Irwin)

Seasons 6 and 7 – complementing SPLASH

UVISTA DR2 K_s -band

SPLASH 3.6µm data (10hrs per pixel)

3.6 μm model image, based on 5σ K_s-band templates

$3.6 \mu m$ residual image, objects missed in K_s model highlighted

$3.6\mu m$ SPLASH data, objects missed in K_s model highlighted

Science: UV-selected Galaxies at high z

Bowler, Dunlop et al., 2012, MNRAS, 426, 2772 Bowler, Dunlop et al., 2014, MNRAS, 445, 359 Bowler, Dunlop et al., 2015, MNRAS, 452, 1817 Parsa, Dunlop et al., 2015, arXiv:1507.05629

Combine UltraVISTA with deep CFHT/Subaru/HST optical imaging

Objects selected on Y+J catalogue

UltraVISTA robust z ~ 7 galaxies

Bowler, Dunlop et al. (2012)

Major challenge is distinguishing z = 7 galaxies from T dwarfs

Big problem for ground-based surveys at J ~ 25

20

10

Μ4

3

LO

то

4

Spectral Type

Τ8

×

UltraVISTA robust z ~ 7 galaxies Bowler, Dunlop et al. (2012, 2014)

Sample includes most massive z = 7 galaxies with M^{*} = ~ 10¹⁰ M_{sun}

SFR ~ $10 - 40 M_{sun}/yr$

Median rest-frame UV slope β = -2.0

Bright end of z = 7 Luminosity Function Bowler, Dunlop et al. (2012, 2014)

Evidence for dust at z ~ 7 ?

New results from UltraVISTA indicate bright end of LF at z = 7 flatter than Schechter function, but steeper than most model predictions without dust Bowler, Dunlop et al. (2014, 2015)

Evidence for dust, + implications for mass quenching etc UV Galaxy LFs at z = 5,6,7:

Evidence for transition from double power-law to Schechter Evolution is primarily luminosity evolution

Bowler, Dunlop, McLure et al. 2015

Currently receiving HST WFC3 imaging of brightest z = 7 sources

+ Cycle 3 ALMA observations approved

New measurements of the UV galaxy luminosity function at z = 2, 3, 4

UltraVISTA combined with HST GOODS/CANDELS and HUDF12 Parsa, Dunlop et al. 2015

Science: Galaxy Mass Functions

Muzzin et al. 2013, ApJ, 777, 18 Ilbert et al. 2013, A&A, 556, 55 Mortlock, McLure et al., 2015

UltraVISTA + COSMOS (25-band) means we can now compute **reliable bias-free** photometric redshifts at 1 < z < 3 (O. Ilbert et al + FMOS +zCOSMOS + DEEP2 spectra) Deep, high quality photometry now **enables new science** at $z\sim2$ (mass function, clustering), pushing further down in mass to allow us to see M* galaxies out to $z\sim2$

addition of Y helps a lot at $1 < z_{phot} < 2$

Ilbert et al. 2013 Growth of galaxy stellar mass function since $z \sim 4$

220,000 galaxies with $K_s < 24$ from UltraVISTA DR1 10,800 spectroscopic redshifts

Ilbert et al. 2013 Growth of galaxy stellar mass function since z ~ 4

Integrate - Growth of stellar mass density

New measurement of evolving galaxy stellar mass function combining CANDELS and UltraVISTA DR3

Mortlock, McLure et al., in prep

Science: Dusty star-forming galaxies

e.g. from Spitzer Steinhardt et al. 2014, ApJ, 791, L25

e.g. fom sub-mm/mm surveys Smolcic et al. 2012, A&A, 548, 4 Koprowski et al. 2014, MNRAS, 444, 117 Scoville et al. 2015, arXiv:1505.02159 Koprowski et al. 2015, arXiv:1509.07144

Star-forming galaxy "main sequence" at 4 < z < 4.8 and 4.6 < z < 6 Steinhardt et al. 2014

Evolution of specific star-formation rate

Koprowski, Dunlop et al. 2015 See also Lidia Tasca's talk tomorrow

Evolution of specific star-formation rate

Koprowski, Dunlop et al. 2015

> 100 studies have utilised UltraVISTA data over last 3 years

Triply-lensed background z~2 galaxy, lensed by foreground elliptical Muzzin et al. 2012, ApJ, 761, 142

HST follow-up of this lens: n = 4, so small bulge Muzzin et al. in prep

X-shooter follow-up: Hill et al. in prep z = 2.756, highest redshift quiescent/quenched galaxy with measured velocity dispersion

Figure 2: X-SHOOTER spectrum of a strongly-lensed quiescent galaxy at z = 2.756(Hill et al. in prep). This is the highest-redshift quiescent galaxy for which absorption lines have been detected. This galaxy is at similar redshift, and is slightly fainter than the proposed target so is indicative of the quality of spectrum we will obtain. Note the K-blocking filter was used in this observation so most of the data is in the observed Hband.

Dynamical mass = stellar mass

Clustering studies and $M^*/M_{halo:}$ peaks at $log(M_h) \sim 12.2$

McCracken et al. 2015, MNRAS, 449, 901

Emission-lines at z > 7 VISTA narrow-band imaging

See Bo Milvang-Jensen's talk tomorrow

DR4 - Will contain all data to summer 2016

These new data will deepen the "deep strips" and are expected to deliver imaging reaching 5-sigma, 1.8-arcsec diameter AB mag detection limits: Y=26.3, J=26.0, H=25.7, K_s=25.3

Will also have deepened the complete K_s image to $K_s=25.0$

This dataset will be based on ~1300 out of the 1642 hours of exposure time awarded.

Observing overhead: execution/exposure = 1.32

So ~450 hours would need to be awarded starting Dec 2016 to complete originally requested/allocated time

The Future: boosting the legacy value of UltraVISTA

Need to re-appraise in the era of Subaru HyperSuprimeCam

Deep HSC survey proposes to deliver Y-band to 26.5 (5-sigma)

COSMOS2015 catalogue Laigle, McCracken et al. 2015

Summary

- UltraVISTA has been, and continues to be a powerful/productive public survey
- Now ultilised in essentially all studies of the COSMOS field
- Breakthrough results on bright high-redshift galaxies, into the reionization era at $z \sim 7$
- State-of-the-art galaxy stellar mass functions out to $z \sim 4$
- Key role in identifying and studying dusty star-forming galaxies
- Completes λ coverage with CFHT/Subaru/Spitzer/Herschel/SCUBA-2
- Provides crucial boost in dynamic range when combined with HST and Hawk-I surveys
- Proving a powerful lever for HST, ALMA and VLT follow-up
- VIRCAM+VISTA performing to spec, but observing overhead 1.32
- First 5 seasons now released. Seasons 6 and 7, ending July 16, will provide DR4
- Survey needs extra time beyond summer 2016 to provide original planned exposure time
- Now reconsidering strategy in light of SPLASH and Subaru HyperSuprimeCam
- LOI plan for max legacy ~800 hours to complete JHK_s to DR4 depth across whole field