ALMA/Herschel Archival Workshop 2015, Apr 15-17, 2015

Building the Herschel-SPIRE Point Source Catalog (SPSC)

Bernhard Schulz on behalf of the SPSC Team NHSC-IPAC Caltech

The SPSC Team

NASA Herschel Science Center IPAC-Caltech Nanyao Lu John Rector

Bernhard Schulz (PI) David Shupe Kevin Xu

Konkoly Observatory Csaba Kiss Gabor Marton

SPIRE ICC, Rutherford Appleton Labs, STFC Chris Pearson **SPIRE ICC, Cardiff University** Andreas Papageorgiou

Herschel Science Centre, ESAC-ESA Tanya Lim Ivan Valtchanov **Univ. of Illinois at Urbana Champaign** Austin Edmister Joaquin Viera

Goal

- Build a homogeneous point source catalog from all SPIRE scan map observations, geared primarily at the extragalactic community, that can serve as a pathfinder for ALMA and other Submm and Far-IR facilities.
- Use the combined expertise of specialist teams before they dissolve.

SPIRE Sky Coverage

All scan maps	squ. deg	fraction	of all sky
Total	4723		11.4%
SpirePacsParallel	2515	53%	6.1%
SpirePhotoLargeScan	2001	42%	4.8%
SpirePhotoSmallScan	208	4%	0.5%

- There are three relevant SPIRE scan map observing modes:
 - Parallel Mode: SPIRE and PACS observing larger portions of the sky simultaneously.
 - Large Scan Mode: SPIRE scanning the sky in several scan legs, normally followed by scans in a perpendicular direction.
 - Small Scan Mode: SPIRE scanning across a single coordinate in two perpendicular directions.

Scan Maps and Coverage

- SPIRE scans the sky with its 4' x 8' detector arrays at an angle close to 45 deg in almost perpendicular directions.
- Very few observations exist without a cross-scan direction.
- Parallel Mode observations normally are linked to another observation in cross-scan direction.
- Turnaround data exist but will only be introduced in HIPE 13 processing.

A Bit of History

- The idea grew into a plan
 - "The Herschel-SPIRE Point Source Catalog Implementation Plan", Bernhard Schulz (NHSC) 14-Nov-2013 V0.1
- The plan called for a feasibility study
 - Tested source extraction methods
 - Improved photometric performance
 - Assessed expected completeness and reliability
 - Report
 - The Herschel-SPIRE Point Source Catalog, Feasibility Study Report, Bernhard Schulz, Gabor Marton, Kevin Xu, Nanyao Lu, David Shupe, Ivan Valtchanov, Babar Ali, Chris Pearson, John Rector, Tanya Lim, 1) NHSC-IPAC Caltech, 2) Konkoly Observatory, 3) HSC-ESAC ESA, 4) RAL-STFC

SPIRE

Building the SPSC

esa

Hifige Obsc

Important Work Ahead

- Data Reprocessing Phase
 - Data Reprocessing with HIPE 13 (under way)
- Source Extraction Phase
 - Source extraction
 - Assessment of Photometric Accuracy, Completeness and Reliability
 - Generation of Structure Noise Maps and values
 - Position corrections

Consolidation Phase

- Database setup and ingestion
- Consolidation of source extractions into single objects
- Statistical analysis of database contents
- Derivation of best flux estimate
- Quality Assessment and Documentation Phase
 - Derive specific flags like semi-extended source, map edge, etc.
 - Determine overall quality flag
 - Explanatory Supplement

Database Schema (SpireCat)

Catalog Entries

Catalog Derivation Procedures

- **Source detection:** HIPE Sussextractor.
- **Position offsets:** Stacking of 250µm maps on WISE point sources.
- **Group/Object Consolidation:** Position matching using Q3C indexing.
- Source photometry: Timeline Fitter
- **Extended source discrimination and artifact rejection:** Second Timeline Fitter run and aperture photometry (Daophot) -> Statistical database analysis.
- Photmetric uncertainties: Function of local structure noise.
- Instrumental noise: Instrument model.
- **SSO Contamination Flag:** SSO track position matching.
- Map Edge Flag: Coverage map analysis.
- Variability Flag: Statistical database analysis.
- Nearby Galaxy Flag: Position match with nearby galaxy ellipses.
- Structure Noise Flag: Local structure noise.
- List of source ObsIDs: Position matching using Q3C indexing.
- **Quality Index:** Combination of quality indicators.

Progress I

- Reduced full SPIRE scan map dataset (few exceptions) to Level 2 and Level 2.5 (finished Jan 2015).
 - Problem with destriping in pre-version of HIPE 13 caused some artifacts.
 - Currently being repeated with released HIPE 13 version.
- Relational Postgres database with source ingestion scripts for SPIRE created at IPAC in Feb.
 - Successfully ingested all representative dataset sources (158607).
 - Work on access outside IPAC and Q3C indexing in progress.
- Performed point source extraction on representative dataset (160 obslds) (04-Mar-2015)
- Workpackage document since March 2015.

Progress II

- PSC Coordination Meeting with PACS 24-26. Feb at IPAC.
 - Coordination of SPIRE and PACS.
 - Preliminary catalog columns defined.
 - Fundamental importance of structure noise maps for photometric accuracy and completeness agreed.
 - Defined format of structure noise maps.
 - Defined format of SSO contamination tables.
- Position corrections for representative dataset with improved position correction tool through stacking on WISE sources 13-Mar-2015.
- List of 2MASS large galaxies with semi major axis > 1' obtained from NED (Thanks to Joe Mazzarella, Ben Chan) 26-Mar-2015
 – exclusion/flagging of intra galaxy sources
- Currently reprocessing all SPIRE scan maps from HIPE 12.1 Level 0 to Level 2 with HIPE 13.0

Conclusions

- A SPIRE point source catalog is being built as an additional legacy product that can be used as pathfinder by other submm facilities like ALMA.
- We expect a total of ~ $3*10^6$ point sources from ~12% of the sky at 250, 350 and 500 μ m.
- Wavelength cross identification is not planned although some cross association should be possible in a future version.
- A comprehensive planning phase and feasibility study is now being followed by actual production phases.
- A team of instrument experts will ensure a high quality level of the photometric and positional data.
- The catalog will be based on HIPE 13 maps.
- Through team coordination a maximum of similarity should be achieved between the PACS and SPIRE catalogs.
- Distribution through ESA HSA and NASA/IPAC IRSA.
- This project has already now greatly benefitted the quality of HIPE 12-14 data products and documentation.

ALMA/Herschel Archival Workshop 2015, Apr 15-17, 2015

That's all Folks!

ALMA/Herschel Archival Workshop 2015, Apr 15-17, 2015

Additional Slides

Structure Noise Calculation

The structure noise measures the fluctuation around a given point in the sky. This measure can be translated into the power spectrum of the neighbouring areas, but it gives local information instead of a general number. We use this quantity to describe the background noise in the close vicinity of each detected source.

For each pixel of the map the structure noise (N_S) is calculated as the mean deviation of the pixel's (green) flux with respect to the reference pixel (red). It is calculated as follows:

$$N_S = \sqrt{\frac{1}{24} \sum_{i=1}^{24} (d_i - \mu)^2}$$
, where $d_i = |F_{x_t, y_t} - F_{x_i, y_i}|$
and μ is the mean value of the d_i values

The Lockman Hole (KPGT_dlutz_1)

Field G334.65+2.67 (KPOT_mjuvela_1)

Completeness vs. Structure Noise vs. Input Flux

Flux levels: 250, 230, 210, 190, 170, 150, 130, 110, 90, 70, 50, 30 & 10 mJy

At low structure noise levels sources above 60 mJy can be detected reliably

At high structure noise levels completeness becomes lower

Photometry vs. Structure Noise vs. Input Flux

Flux levels: 250, 230, 210, 190, 170, 150, 130, 110, 90, 70, 50, 30 & 10 mJy

At low structure noise levels sources above ~ 40 mJy can be measured accurately

At high structure noise levels the photometry is not reliable

Completeness and Reliability

Catalog Entries

ri promininary cutatog e			
Object ID	String	Unique identifier that designates the object at a given location in the sky for which one	
		or more source detections exist. The values given in the additional columns represent a	
		synthesis of all information from all contributing sources. The name format should	
		conform to general astronomical standards and is still TBD.	
RA	Double	Right Ascension expressed in decimal degrees in a J2000 reference system.	
Dec	Double	Declination expressed in decimal degrees in a J2000 reference system.	
RA Err.	Float	One sigma uncertainty of Right Ascension [deg].	
Dec Err.	Float	One sigma uncertainty of Declination [deg].	
Flux	Float	Point source flux [Jansky/beam].	
Flux Err.	Float	One sigma uncertainty of point source flux [Jansky/beam]. This number may be	
		derived from the structure noise value for this source, its total flux, the total number of	
		contributing readouts, the number and uncertainties of contributing source detections,	
		(TBD).	
S/N	Float	Signal to noise = Flux/ Flux Err.	
Instr. Err.	Float	One sigma instrumental uncertainty [Jansky/beam]	
# Detections	Integer	Number of contributing source detections.	
Time	String	Standard date string expressing start time of first contributing observation. More	
		contributing observations may have to be covered in a separate catalog product.	
Extended source	Flag	Flag indicating that a source is potentially wider than a typical point source at the	
	_	given wavelength.	
SSO contamination	Flag	Flag indicating potential SSO confusion [Yes/No type]	
Nearby Galaxy	Flag	Flag indicating that source is located within the encircling ellipse of a nearby galaxy	
	_	[Yes/No type].	
Variability	Flag	Flag indicating discrepant flux results of more than one contributing observation that	
-	_	are further apart than 5 sigma [Yes/No type].	
STRN Category	Flag	Structure noise category indicating one of several TBD intervals. [several categories	
	_	indicated by letters A,B,C].	
Cirrus Category (??)	Flag	Cirrus noise category derived from SQRT(STRN^2 – Instr_Err^2) [several categories	
	-	indicated by letters A,B,C].	
Map Edge	Flag	Flag indicating proximity to map edge (TBD) [Yes/No type].	
Quality	Flag	Overall quality flag being a synthesis of several of the preceding columns [several	
-	_	categories indicated by letters A,B,C].	

A preliminary catalog definition:

