

Linking stars, planets and debris through Herschel observations of radial velocity exoplanet host stars

Jonathan P. Marshall Universidad Autónoma de Madrid

Introduction

- Herschel observed 104 radial velocity exoplanet host stars, of which 30 also had detectable circumstellar discs (DEBRIS, DUNES, GT and SKARPS)
- Given that we expect planets to form from the agglomeration of planetesimals, there should be some link between the two
- Previous work with Spitzer identified no correlation between planets and debris (Moro-martin et al. 2007, Bryden et al. 2009)
- Observational signatures of planets may be visible in the spatial distribution of dust discs around other stars

Imaging exoplanets

 We find exoplanets in systems with debris discs (Marois et al. 2008; Bonnefoy et al. 2011; Rameau et al. 2013)

Multi-component discs

 HIP 17439's debris disc is potentially the result of two cold dust belts

Dynamical interactions

 e.g. Eta Corvi's Spitzer IRS spectrum shows evidence for KBO material in inner system

Perturbation

- Stars hosting exoplanets with low orbital eccentricities show a weak tendency to have brighter discs
- Planets with lower e_{orb} are less disruptive to parent bodies in debris belts

Maldonado et al. 2012

Eccentric discs

- e.g. HIP 15371
 - Asymmetric structure proposed to be the result of dynamical perturbation by a planetary companion
 - Similar evidence seen in other discs (in sub-mm) tends to be weak, potentially result of low s/n observation
 - Not necessarily a planet, as remnant gas could affect dust

Coplanarity

- Inclination of star, *i*_∗, and disc, *i*_d
- Debris discs are generally seen to lie along the equatorial plane of the host star
- Few exceptions, e.g.
 99 Her (Kennedy et al.
 2012)
- What about star-planet misalignment?

Debris and planets

- Incidence of debris is correlated with the presence of exoplanets
- Planet-bearing stars: 28/99 = 28 ± 5% with disks
- No known planets: 43/203 = 21 ± 3% with disks

Debris and high mass planets

- No trend between [Fe/H] and debris
- Higher [Fe/H] stars are more likely to host Joviar
 planets
- Stars with cool Jupiters and discs have fainter discs

Debris and low mass planets

Debris and metallicity

Summary

- Look around stars with debris discs!
- Planets should lie in the plane of the system, which can be identified from the debris belt
- Tend to find low(er) mass planets around low metallicity stars, and therefore more dust
- ELT will characterise the warm dust emission, resolving these inner belts, and exoplanet properties through direct imaging and spectroscopy