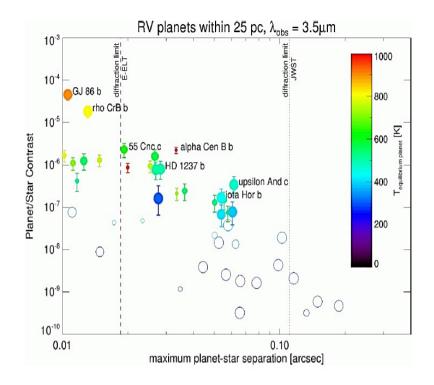
AO performances critical for exoplanet science? (1/2)

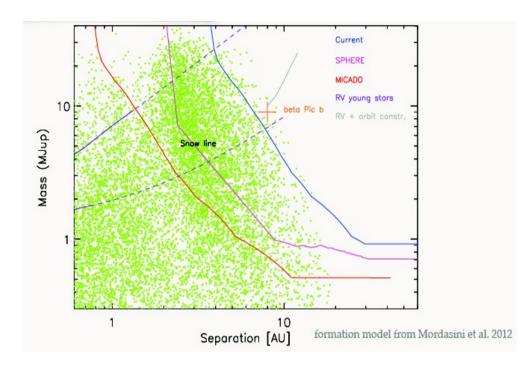
*ELT SCAO performances: associated assumptions (telescope, etc) and end to end error budget? Need for unified inputs for the instruments teams (even if they may evolve with the knowledge of the global system)

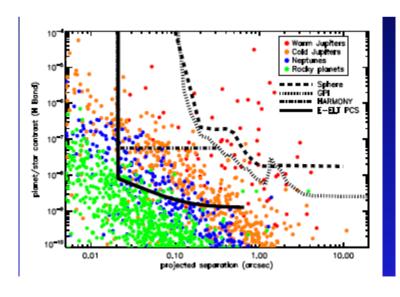
**jitter, windshake, residual aberrations (cophasing...), pupil motion

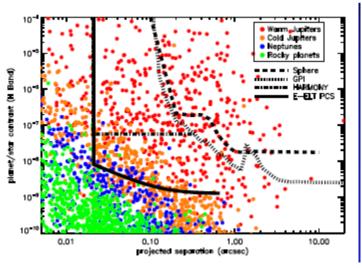
- * Impact of **missing segments** on the primary on image quality? What is needed to get simulations of the impact on instruments performances?
- * Estimation of achievable contrasts: respective impact of corona devices, NCPA & post processing
- * Which planets can be detected given the expected contrasts performances (req)? according to the goals performances?
 - In case of goal performances, what are the steps forward?

AO performances critical for exoplanet science? (1/2)


$$10^5$$
 (or 10^6 or 10^7 ...)


AO performances & exoplanets (1/2)


- *ELT SCAO performances: associated assumptions (telescope, etc) and end to end error budget? Need for unified inputs for the instruments teams (even if they may evolve with the knowledge of the global system)
- * Impact of **missing segments** on the primary on image quality? What is needed to get simulations of the impact on instruments performances?
- * Estimation of achievable contrasts: respective impact of corona devices, NCPA & post processing
- * Which planets can be detected given the expected contrasts performances (req)? according to the goals performances?
 - In case of goal performances, what are the steps forward?
- * **Potential ground braking science** (e.g. coupling HRS and high contrast imaging): any additional needs for the AO?


AO performances & exoplanets (2/2)

- * HIRES and AO
- * **HARMONI and** exoplanets: expected performances? First light?
- * **METIS:** background limited at 2lambda/D in 10 years from now (L, M): realistic? What steps forward?
- * Next steps of AO facilities (LTAO, MCAO) at ELT: any impact on exo-planet science? (performances, additional constraints)
- * Plan towards PCS ? Lessons from Sphere; lessons from first light instruments in terms of high contrast performances?

Planet/star combination	Transmission	Reflected light	Thermal emission
Mini-Neptune, a = 0.1 AU, Teq = 700 K,	104	10-6 @ λ=1.0 μm	10 ⁻⁵ @ λ=3.5 μm
K0 star, d = 10/30 pc (non-transiting/transiting)		s = 2 λ/D	s = 0.6 λ/D
Super-Earth, a = 0.1 AU, Teq = 255 K, M4 star, d = 5/15 pc (non-transiting/transiting)	10-5	10-7 @ λ=1.0 μm s = 4 λ/D	10 ⁻⁵ @ λ=10 μm s = 0.4 λ/D
Jupiter, a = 2 AU, Teq = 180 K,	10-5	10 ⁻⁸ @ λ=1.0 μm	10 ⁻⁷ @ λ=10 μm
G2 star, d = 15/110 pc (non-transiting/transiting)		s = 27 λ/D	s = 2.7 λ/D
Young Jupiter, a = 10 AU, Teq = 1200 K,	N/A	10-9 @ λ=1.0 μm	10-4 @ λ=2.0 μm
G2 star, d = 30 pc (non-transiting)		s = 67 λ/D	s = 33 λ/D