A fully parametrized model of the activity pattern of a Solar-like star

Simon Borgniet, Nadège Meunier & Anne-Marie Lagrange

Institut de Planétologie et d'Astrophysique de Grenoble (IPAG)

I. The Sun as a case study for exoEarths detectability

Stellar activity and low-mass planet detectability

Observable	Future instruments	Expected accuracy	Earth-mass planet @ 1 au	Solar activity amplitudes	
Radial velocity (RV)	Espresso/VLT Hires/E-ELT	0.1 m/s	0.09 m/s	12 m/s (full cycle)	0.5-1.5 m/s (Prot)
Astrometry	Neat	0.05 µas	0.33 µas	0.05-0.1 µas	
Photometry	Tess, Cheops, Plato	10 ⁻⁵	10-4	10 ⁻³ (full cycle)	A few 10 ⁻³ (Prot)

• Increased accuracy : search for very low-mass planets allowed

 Major obstacle : stellar 'magnetic' activity : dark spots and bright features (plages+network)

1-day to 1-decade timescale

Impact on both radial velocity (RV), astrometry, photometry

• For a given signal, two challenges :

1. to distinguish between stellar noise and planetary signature

2. if activity, how to correct it to find smaller planets

I. The Sun as a case study for exoEarths detectability

Current knowledge on stellar activity

• For most of stars :

- (+) indirect estimators : Ca index ; activity cycles
- (-) active structures not directly observable, structure properties unknown
- (-) convective inhibition level
- Case of the Sun studied as a moderately active star :
 - (++) observations of all structures (even the small ones)
 - (++) activity properties and active structures well described
- An ideal prototype to study impact of activity on low-mass planets detectability Is the Earth detectable when observing the Sun as a star? (Part II)

Can we use the Sun as a template to study other stars ? (Part III)

II. The Sun seen as a star

'Observational' Approach

- Instantaneous maps of solar activity pattern over full Cycle 23
 - dark spots from catalogs
 - bright features from MDI magnetograms (> 2M structures)

- Structure lists (daily time step, size, localization) : input to simulations
- Building spectra : solar spectrum +3 comp. (spots, bright features, attenuation of convective blueshift)
- Computing RV assuming an Espresso-like instrument
- Detection limits with noise and/or planets, periodograms (Lagrange et al. 2010, Meunier et al. 2010)

II. The Sun seen as a star

Meunier et al. 2010

Results : RV

Attenuation of convective blueshift in active structures found dominant in case of RV

Detection limits : 1 Earth-mass planet @ 1.2 au *not detectable* when convection not corrected for

II. The Sun seen as a star

Results : correcting for the convective signal

Strong correlation between convective RV and bright features filling factor Correction using Ca index

Impact on detection limits : 1 Mearth planet @ 1.2 au only reachable if excellent snr on Ca and excellent data sampling (typ. 1000 observations) $_{6}$

Meunier et al. 2013

III. The Sun as a template

Parametric approach

• Activity pattern over a full solar cycle :

need ~30 parameters

- Global activity distribution
- Large scale dynamics
- Spatial/temporal structure distributions
- Individual structure behavior
- ~2M structures

- (from various solar obs.)
- Outputs : spot and bright feature lists (time step, size, localization)
- Advantage : active structures over 360° : study of stellar inclination impact

Observations

Spots

Bright features

Simulations

3000

4DQD

1000

III. The Sun as a template

Preliminary results : Validation of the approach

Structures : observed / simulated

III. The Sun as a template

Preliminary results

- Impact of stellar inclination for a star with an 'activity belt' centered on the equator, assuming a convection inhibition level
- Decrease of both activity amplitude and dispersion with I.

- Impact of rotational velocity on RV: linear in the range 1.5-12 km/s
- Impact of convection inhibition level on RV: linear in the range 50-300 m/s

IV. Summary and Prospects

Using the Sun to study the detectability of low-mass planets

- Is the Earth detectable when observing the Sun ?
 - Inhibition of convective blueshift dominant in stellar noise for the Sun

- Earth-mass planets detectable with RV only under very good (exceptional?) circumstances : dedicated telescope very valuable

- Can we use the Sun as a template ? (work in progress)
 - RV rms decreased by 1/3 from 90° to 10° inclination
 - Impact of rotational velocity on RV : linear in the range 1.5-12 km/s
 - Impact of convective inhibition level on RV : linear in the range 50-300 m/s
- Perspectives
 - Application to other stars, other activity levels and other activity properties
 - Combination of different observables (RV, astrometry, photometry) essential
 - Application to astrometry (participation to the NEAT double blind-test)

Thank you !

Astrometry

Astrometric shifts along (Δx) and \perp (Δy) to the equatorial plane :

- 0.07 µas average dispersion (over full cycle)

Lagrange et al. 2011