

Resolving stellar populations with MUSE

- Sebastian Kamann for the MUSE Team
- with contributions from
 - T.-O. Husser, M. M. Roth, P. Weilbacher, R. Bacon

ESO – Göttingen – Leiden – Lyon – Potsdam – Toulouse – Zürich

MUSE in a nutshell

- panoramic IFS
 combination of 24 IFUs
 1'x1' FoV with 0.2" sampling
 λ ~ 4800Å 9300Å
 R ~ 1770 3590
- very stable
- high throughput
- excellent optical quality
- "point and shoot"

2014/10/16 2 RASPUTIN Workshop

"High-redshift machine"

designed for 3D spectroscopy with unprecedented depth

S. Kamann

Crowded stellar fields

S. Kamann

Resolving stellar populations with MUSE

RASPUTIN Workshop

Problem: crowded field spectroscopy

Traditional spectroscopy fails in crowded fields → few spectra
 Photometric vs. spectroscopic samples in the centre of M13:

M13 - HST/ACS, F606W

M13 - Analysed stars

Solution: IFS & PSF-fitting techniques

S. Kamann

Resolving stellar populations with MUSE

2014/10/16 5 RASPUTIN Workshop

Why does MUSE make a difference?

Comparison to PMAS (Roth et al. 2005)

S. Kamann

Resolving stellar populations with MUSE

2014/10/16 6 RASPUTIN Workshop

PMAS observations of globular clusters

- **•** PMAS (Roth et al. 2005):
 - Calar Alto 3.5m telescope
 - 16x16 spaxel
 - R~7000 at Ca_{II} triplet
- Observations of M3, M13, and M92
 e.g. dataset for M13:

M13, PMAS, whitelight

2014/10/16 7 RASPUTIN Workshop

S. Kamann

start from astrometry

M13, HST/ACS, F606W

S. Kamann

Resolving stellar populations with MUSE

2014/10/16 8 RASPUTIN Workshop

start from astrometrymake observations

M13, HST/ACS, F606W

M13, PMAS, whitelight

2014/10/16 9 RASPUTIN Workshop

S. Kamann

start from astrometry
make observations
identify sources

M13, HST/ACS, F606W

M13, PMAS, whitelight

2014/10/16 10 RASPUTIN Workshop

S. Kamann

- start from astrometry
- make observations
- identify sources
- deblend all simultaneously

M13, HST/ACS, F606W

M13, PMAS, whitelight

2014/10/16 11 RASPUTIN Workshop

S. Kamann

- start from astrometry
- make observations
- identify sources
- deblend all simultaneously

M13, HST/ACS, F606W

M13, PMAS, whitelight

2014/10/16 12 RASPUTIN Workshop

S. Kamann

Some details...

many advantages compared to simpler approaches:

- automatic sky subtraction
- automatic subtraction of stellar background
- wavelength dependencies (PSF, DAR) correctly handled
- S/N optimization

PampelMuse

- Potsdam Advanced Multi-PSF Extraction Algorithm for MUSE
- computationally very efficient
- extensively tested using simulated and real data
 - PMAS, ARGUS, KMOS, MUSE
- plan to publish it

2014/10/16 13 RASPUTIN Workshop

Radial velocities

- measured for ~80 stars per cluster
- complementary to existing data
- different S/N ratios \rightarrow uncertainties \leq 10km/s

2014/10/16 14 RASPUTIN Workshop

Constraints on black hole masses

- Measured velocity dispersions compared to models with different black hole masses:
 16 10000M
 - for M92: M_{BH} < 980 M_{sun}
 less stringent constraints (~8000 M_{sun}) for M3 & M13

- Comparison with other studies:
 - M92 limit among most stringent obtained so far
 - despite 3.5m telescope, no AO, mediocre seeing
 - shows huge potential of approach

2014/10/16 15 RASPUTIN Workshop

Why MUSE makes a difference

>2 nights of PMAS:

M13, PMAS - whitelight

Resolving stellar populations with MUSE

S. Kamann

Why MUSE makes a difference

<2 hours of MUSE:</p>

2014/10/16 17 RASPUTIN Workshop

S. Kamann

Why MUSE makes a difference

>2 nights of PMAS:

<2 hours of MUSE:</p>


```
2014/10/16 18
RASPUTIN Workshop
```

S. Kamann

NGC 6397 – observed in Comm2B

central pointing:

- 60s of exposure time
- seeing ~0.6 arcsec

measured FWHM:

2014/10/16 19 RASPUTIN Workshop

Source extraction on MUSE data

2014/10/16 20 RASPUTIN Workshop

S. Kamann

Extracted sources

4600 sources with S/N>10 in 3x3 mosaic

not limited by crowding

spectra across the complete CMD

2014/10/16 21 RASPUTIN Workshop

S. Kamann

Extracted sources

4600 sources with S/N>10 in 3x3 mosaic

not limited by crowding

spectra across the complete CMD

2014/10/16 22 RASPUTIN Workshop

S. Kamann

Spectral analysis

- full spectral fitting using grid of synthetic PHOENIX spectra (Husser et al. 2013)
- fitting corrects for telluric absorption
- Grid complete in
 - log g
 - T_{eff}
 - ▼ Fe/H
 - alpha (in progress)

Radial velocity accuracy

- Possible drawbacks
 - rather low resolution
 - MUSE combines 24 IFUs
 - LSF critically sampled
- Analysis of telluric absorption
 - no systematic errors across FoV
 - achievable accuracy ~1km/s

Radial velocity analysis

- Using measurements from 4600 stars with S/N>10
- correction for foreground stars
- central velocity dispersion to precision <1km/s</p>
- potential for dynamical studies
 - binarity
 - mass-to-light ratios
 - internal rotations
 - peculiar (high-velocity) stars
 - intermediate-mass black holes (best with AO)

2014/10/16 25 RASPUTIN Workshop

Metallicity measurements

- preliminary!
- expect ~0.1dex precision for S/N>30
- unique calibration possibilities with large samples
- not only giants, but complete CMD
- serendipitous discoveries
- α-elements are being worked on

Effective temperatures

2014/10/16 27 RASPUTIN Workshop

3000

5000

 $T_{\rm eff} \, [{\rm K}]$

S. Kamann

Resolving stellar populations with MUSE

7000

Resolved stellar populations in nearby galaxies

- major science driver for ELT
 can MUSE do some of the science already?
- pilot study on NGC300 (PI: Roth)
 - planetary nebulae
 - massive stars
 - HII regions

huge legacy value

VRI composite, seeing ~0.6"

Resolved stellar populations in nearby galaxies

- major science driver for ELT
 can MUSE do some of the science already?
- pilot study on NGC300 (PI: Roth)
 - planetary nebulae
 - massive stars
 - HII regions

huge legacy value

green: OIII 5007, red: H-alpha

Conclusions

- MUSE is available and working great.
- PSF-fitting techniques provide a powerful method to study resolved stellar populations.
- Combining MUSE & PSF-fitting techniques results in an unprecedented multiplex-factor.
- Despite the low spectral resolution, there is a lot to analyse (velocities, Fe/H, stellar parameters,...) and to discover.

