Auto-consistent metallicity and star formation history of Blue Compact Dwarf Galaxies:

NGC 6789 as a pilot study

Rubén García-Benito

Instituto de Astrofísica de Andalucía

Enrique Pérez Montero (IAA)

Motivations Blue Compact Dwarf Galaxies Exercise

Star Formation Histories

Color-magnitude diagram (CMD)

Motivations Blue Compact Dwarf Galaxies Exercise

Star Formation Histories

Color-magnitude diagram (CMD)

Spectral fitting methods

Motivations Blue Compact Dwarf Galaxies Exercise

Star Formation Histories

Color-magnitude diagram (CMD)

Spectral fitting methods

Motivations Blue Compact Dwarf Galaxies Exercise

Star Formation Histories

Color-magnitude diagram (CMD)

Spectral fitting methods

Motivations Blue Compact Dwarf Galaxies Exercise

Blue Compact Dwarf Galaxies (BCD)

- Diameter: 2 5 kpc
- Mass: 1/10 1/100 of the mass of the Milky Way
- Very few are strongly interacting/merging systems
- Evenly distributed in space
- $\bullet\,$ Intense star-forming activity in a spatial scale $\sim 1~{\rm kpc}$

Motivations Blue Compact Dwarf Galaxies Exercise

Blue Compact Dwarf Galaxies (BCD)

- Diameter: 2 5 kpc
- Mass: 1/10 1/100 of the mass of the Milky Way
- Very few are strongly interacting/merging systems
- Evenly distributed in space
- Intense star-forming activity in a spatial scale $\sim 1~{\rm kpc}$

Motivations Blue Compact Dwarf Galaxies Exercise

The SFH (Star Formation History) of BCDs

Most of them present old stellar populations, although there is a discrepancy about a continuous SFR or recursive episodes of star formation¹

¹Terlevich (2004), Sánchez-Almeida et al. (2008)

Motivations Blue Compact Dwarf Galaxies Exercise

Low metallicity and SFR

Reconcile low observed metallicity in BCDs with the relatively high SFR. Possible mechanisms²:

- Variations in the initial mass function (IMF)
- Accretion of metal-poor gas
- Galactic winds powered by supernovae explosions

Numerical models \rightarrow Last mechanism is the most simple to reproduce the observed properties 3

²Matteucci & Chiosi(1983)

³Tolstoy, Hill & Tosi 2009

Motivations Blue Compact Dwarf Galaxies Exercise

Methods, techniques, data:

- \bullet Photometry: Integrated & Resolved \rightarrow Properties, CMD, Star Formation History (SFH)
- Spectrophotometry: Metallicity, gas properties, SFH
- Photoionization Models

Motivations Blue Compact Dwarf Galaxies Exercise

Methods, techniques, data:

- \bullet Photometry: Integrated & Resolved \rightarrow Properties, CMD, Star Formation History (SFH)
- Spectrophotometry: Metallicity, gas properties, SFH

Let's put it all together!

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

The nearest BCD: NGC 6789

814W \oplus FUV \oplus 555W \oplus H α contours

 $\begin{array}{l} {\rm 3.6~Mpc} \rightarrow \\ {\rm (m-M)} = 27.80 \\ {}_{\rm (Drozdovsky \ et \ al. \ 2001)} \end{array}$

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

Observations

• ISIS@4.2m-WHT at Roque de los Muchachos

- Airmass ~ 1.3
- Sky subtraction \rightarrow strong residuals \rightarrow 7600-9900Å unusable

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

Observations

- ISIS@4.2m-WHT at Roque de los Muchachos
- Double-beam spectrograph

Slit position	Spectral range (Å)	Disp. (\AA px^{-1})	FWHM (Å)	Spatial res. $('' px^{-1})$	Exposure Time s
S1 S1 S1 S2 S2 S2 S2	3670-5070 5500-7800 7600-9900 3670-5070 5500-7800 7600-9900	0.45 0.86 0.86 0.45 0.86 0.86	1.0 3.5 3.5 1.0 3.5 3.5	0.2 0.2 0.2 0.2 0.2 0.2 0.2	$\begin{array}{c} 4 \times 900 \\ 2 \times 900, 1 \times 300 \\ 2 \times 900 \\ 5 \times 900 \\ 2 \times 900, 1 \times 300 \\ 2 \times 900 \end{array}$

- $\bullet \ \ \text{Airmass} \sim 1.3$
- $\bullet~$ Sky subtraction \rightarrow strong residuals \rightarrow 7600-9900Å unusable

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

Slit Positions

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

Spectra: Knots A & B

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

Spectra: Knots C, D & E

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

Subtraction of the underlying population

⁴Cid Fernandes et al. (2004,2005)

Bruzual & Charlot (2003)

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

Subtraction of the underlying population

- ⁴Cid Fernandes et al. (2004,2005)
- ⁵Bruzual & Charlot (2003)

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

Reddening correction

Tthe		
NGC6789-A 0.1 NGC6789-B 0.1 NGC6789-C 0.1 NGC6789-C 0.1 NGC6789-D 0.1 NGC6789-E 0.4	$\begin{array}{c} 2 \pm 0.02 \\ 0 \pm 0.02 \\ 1 \pm 0.02 \\ 2 \pm 0.02 \\ 7 \pm 0.06 \end{array}$	$\begin{array}{c} 0.26 \pm 0.04 \\ 0.21 \pm 0.04 \\ 0.24 \pm 0.04 \\ 0.26 \pm 0.04 \\ 1.00 \pm 0.10 \end{array}$

$c(H\beta)$ calculation

- Reddening coefficient c(Hβ) for each fiber spectrum
- Balmer decrement derived from $H\alpha$, $H\beta$, $H\delta$, $H\gamma$ compared to the theoretical value expected for case B recombination⁶
- Cardelli et al. (1989) extinction law

⁶Storey & Hummer (1995)

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

Electron densities and temperatures

	Densities units in cm $^{-3}$ and temperatures in 10^4 K.					
	NGC 6789-A	NGC 6789-B	NGC 6789-C	NGC 6789-D	NGC 6789-E	
n([SII]) n([OII])	80: 60:	60: 70:	60: 60:	90: 70:	300: 250:	
t([OIII]) t([OII]) t([SIII]) ^b	$\begin{array}{c} 1.44 \pm 0.05 \\ 1.35 \pm 0.06^{\rm a} \\ 1.38 \pm 0.16 \end{array}$	$\begin{array}{c} 1.36 \pm 0.10 \\ 1.18 \pm 0.10 \\ 1.30 \pm 0.19 \end{array}$	$\begin{array}{c} 1.44 \pm 0.05 \\ 1.41 \pm 0.08 \\ 1.38 \pm 0.16 \end{array}$	$\begin{array}{c} 1.30 \pm 0.15 \\ 1.21 \pm 0.10^{\text{a}} \\ 1.22 \pm 0.24 \end{array}$	$\begin{array}{c} 1.16 \pm 0.18 \\ 1.33 \pm 0.25 \\ 1.06 \pm 0.25 \end{array}$	

[a] From a relation with T([OIII]) based on photoionisation models

[b] From an empirical relation with T([OIII])

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

NO Wolf-Rayet stellar population detected

The Galaxy: NGC 6789 Long-Slit Spectroscopy **Optical and UV Photometry** Resolved Stellar Photometry

H α : Defining regions

- Palomar/Las Campanas atlas⁷: $H\alpha \oplus BVR$
- Elliptical apertures in Hα up to isophote at 50% of the peak ofr each knot
- NGC 6789 size (H α): major axis \approx 740 pc \otimes minor axis \approx 560 pc (isophote at 3σ over sky background)

⁷Gil de Paz et al. 2003

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

GALEX

- FUV and NUV from the Nearby Galaxies Survey (NGS)
- FUV and NUV flux measured on the Hα-defined ellipses

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

$H\alpha$ and GALEX properties

	NGC 6789-A	NGC 6789-B	NGC 6789-C	NGC 6789-D	NGC 6789-E
$\begin{array}{c} \log F(H\alpha) \; (erg/s/cm^2) \\ \log L(H\alpha) \; (erg/s) \\ Radius \; (pc) \\ FUV \; (mag) \\ NUV \; (mag) \\ NUV \; (mag) \\ FUV - NUV \; (mag) \end{array}$	$\begin{array}{c} -13.96 \pm 0.03 \\ 37.23 \pm 0.02 \\ 30 \\ 20.00 \pm 0.14 \\ 19.86 \pm 0.08 \\ 0.14 \pm 0.16 \end{array}$	$\begin{array}{c} -13.85 \pm 0.03 \\ 37.34 \pm 0.02 \\ 34 \\ 20.00 \pm 0.16 \\ 19.69 \pm 0.09 \\ 0.28 \pm 0.19 \end{array}$	$\begin{array}{c} -13.69 \pm 0.03 \\ 37.50 \pm 0.03 \\ 37 \\ 20.18 \pm 0.20 \\ 19.86 \pm 0.10 \\ 0.31 \pm 0.22 \end{array}$	$\begin{array}{c} -14.03 \pm 0.03 \\ 37.17 \pm 0.02 \\ 36 \\ 19.71 \pm 0.15 \\ 19.68 \pm 0.09 \\ 0.03 \pm 0.18 \end{array}$	$\begin{array}{c} -14.17 \pm 0.03 \\ 37.02 \pm 0.01 \\ 21 \\ 21.24 \pm 0.04 \\ 21.18 \pm 0.01 \\ 0.06 \pm 0.04 \end{array}$

- Brightest in Hα: Knot C
- A-D (brightest knots) have similar UV luminosities
- Knots B and C redder UV colours as compared with the other three

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

$H\alpha$ and GALEX properties

	NGC 6789-A	NGC 6789-B	NGC 6789-C	NGC 6789-D	NGC 6789-E
$\begin{array}{c} \log F(H\alpha) \; (erg/s/cm^2) \\ \log L(H\alpha) \; (erg/s) \\ Radius \; (pc) \\ FUV \; (mag) \\ NUV \; (mag) \\ NUV \; (mag) \\ FUV - NUV \; (mag) \end{array}$	$\begin{array}{c} -13.96 \pm 0.03 \\ 37.23 \pm 0.02 \\ 30 \\ 20.00 \pm 0.14 \\ 19.86 \pm 0.08 \\ 0.14 \pm 0.16 \end{array}$	$\begin{array}{c} -13.85 \pm 0.03 \\ 37.34 \pm 0.02 \\ 34 \\ 20.00 \pm 0.16 \\ 19.69 \pm 0.09 \\ 0.28 \pm 0.19 \end{array}$	$\begin{array}{c} -13.69 \pm 0.03 \\ \hline 37.50 \pm 0.03 \\ \hline 37 \\ 20.18 \pm 0.20 \\ 19.86 \pm 0.10 \\ 0.31 \pm 0.22 \end{array}$	$\begin{array}{c} -14.03 \pm 0.03 \\ 37.17 \pm 0.02 \\ 36 \\ 19.71 \pm 0.15 \\ 19.68 \pm 0.09 \\ 0.03 \pm 0.18 \end{array}$	$\begin{array}{c} -14.17 \pm 0.03 \\ 37.02 \pm 0.01 \\ 21 \\ 21.24 \pm 0.04 \\ 21.18 \pm 0.01 \\ 0.06 \pm 0.04 \end{array}$

• Brightest in $H\alpha$: Knot C

- A-D (brightest knots) have similar UV luminosities
- Knots B and C redder UV colours as compared with the other three

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

$H\alpha$ and GALEX properties

	NGC 6789-A	NGC 6789-B	NGC 6789-C	NGC 6789-D	NGC 6789-E
$\begin{array}{c} \log F(H\alpha) \; (erg/s/cm^2) \\ \log L(H\alpha) \; (erg/s) \\ Radius \; (pc) \\ FUV \; (mag) \\ NUV \; (mag) \\ NUV \; (mag) \\ FUV - NUV \; (mag) \end{array}$	$\begin{array}{c} -13.96 \pm 0.03 \\ 37.23 \pm 0.02 \\ 30 \\ \hline \\ 20.00 \pm 0.14 \\ 19.86 \pm 0.08 \\ \hline \\ 0.14 \pm 0.16 \end{array}$	$\begin{array}{c} -13.85 \pm 0.03 \\ 37.34 \pm 0.02 \\ 34 \end{array}$ $\begin{array}{c} 20.00 \pm 0.16 \\ 19.69 \pm 0.09 \\ 0.28 \pm 0.19 \end{array}$	$\begin{array}{c} -13.69 \pm 0.03 \\ 37.50 \pm 0.03 \\ 37 \\ 20.18 \pm 0.20 \\ 19.86 \pm 0.10 \\ 0.31 \pm 0.22 \end{array}$	$\begin{array}{c} -14.03 \pm 0.03 \\ 37.17 \pm 0.02 \\ 36 \\ 19.71 \pm 0.15 \\ 19.68 \pm 0.09 \\ 0.03 \pm 0.18 \end{array}$	$\begin{array}{c} -14.17 \pm 0.03 \\ 37.02 \pm 0.01 \\ 21 \\ 21.24 \pm 0.04 \\ 21.18 \pm 0.01 \\ 0.06 \pm 0.04 \end{array}$

- Brightest in Hα: Knot C
- A-D (brightest knots) have similar UV luminosities
- Knots B and C redder UV colours as compared with the other three

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

$H\alpha$ and GALEX properties

	NGC 6789-A	NGC 6789-B	NGC 6789-C	NGC 6789-D	NGC 6789-E
$\begin{array}{c} \log F(H\alpha) \; (erg/s/cm^2) \\ \log L(H\alpha) \; (erg/s) \\ Radius \; (pc) \\ FUV \; (mag) \\ NUV \; (mag) \\ NUV \; (mag) \\ FUV - NUV \; (mag) \end{array}$	$\begin{array}{c} -13.96 \pm 0.03 \\ 37.23 \pm 0.02 \\ 30 \\ 20.00 \pm 0.14 \\ 19.86 \pm 0.08 \\ 0.14 \pm 0.16 \end{array}$	$\begin{array}{c} -13.85 \pm 0.03 \\ 37.34 \pm 0.02 \\ 34 \\ 20.00 \pm 0.16 \\ 19.69 \pm 0.09 \\ \hline 0.28 \pm 0.19 \end{array}$	$\begin{array}{c} -13.69 \pm 0.03 \\ 37.50 \pm 0.03 \\ 37 \\ 20.18 \pm 0.20 \\ 19.86 \pm 0.10 \\ 0.31 \pm 0.22 \end{array}$	$\begin{array}{c} -14.03 \pm 0.03 \\ 37.17 \pm 0.02 \\ 36 \\ 19.71 \pm 0.15 \\ 19.68 \pm 0.09 \\ 0.03 \pm 0.18 \end{array}$	$\begin{array}{c} -14.17 \pm 0.03 \\ 37.02 \pm 0.01 \\ 21 \\ 21.24 \pm 0.04 \\ 21.18 \pm 0.01 \\ 0.06 \pm 0.04 \end{array}$

- Brightest in Hα: Knot C
- A-D (brightest knots) have similar UV luminosities
- Knots B and C redder UV colours as compared with the other three

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

WFPC2 images

- Retrieved from HST archive
- NGC6789⁸ at the PC ightarrow 0.20 pixel $^{-1}$ ightarrow 0.80 pc pixel $^{-1}$

 $^{^{8}}$ (m-M)=27.80 (Drozdovsky et al. 2001)

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

WFPC2 Stellar Photometry

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

Completeness

- Due to two factors:
 - Overlapping of stellar profiles in crowded regions
 - Background noise
- Best way to account for completeness: to add artificial stars and to subject them to the same photometric analysis as real stars
- Add less than 10% of the numer of real stars to avoid overcrowding effects \rightarrow 60000 fake stars
- Completeness table: recovered injected stars and injected stars which have not been paired
- Completeness factor per each magnitude bin: <u>recovered stars</u> <u>injected stars</u>

50% COMPLETENESS				
	F555W	F814W		
MAG	26.9	25.6		

The Galaxy: NGC 6789 Long-Slit Spectroscopy Optical and UV Photometry Resolved Stellar Photometry

NGC 6789 Color-Magnitude Diagram

CMD of NGC6789 (\sim 7000 stars) with average photometric uncertainties per magnitude bin

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

Star Formation History: STARFISH

10_{Harris & Zaritsky} (2001,2002)

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

STARFISH and SFHs

- Theoretical isochrones (Marigo et al. 2008) in the range: 1 Myr-14 Gyr
- Metallicity $Z = \{0.001, 0.004\} \rightarrow same as in STARLIGHT libraries^{11}$
- $\bullet\,$ Salpeter IMF: -1.35 from 0.1-100 $M_\odot \to CMD$ does not contain stars with masses $<1~M_\odot$

- Distance Modulus¹² (m-M) = $27.80 \pm 0.13 \pm 0.18$
- Galatic extinction¹³ $A_V = 0.212$

- 11 Bruzual & Charlot 2003
- 12 Drozdovsky et al. 2001, tip RGB
- 13 Schlegel et al. 1998

- Build a set of models to explore the space of parameters and get best (m-M) and A_V
- Steps of 0.01 in distance modulus and extinction
- Error evaluation \rightarrow Generate a series of synthetic CMDs using the best-fitting SFR and find a correspondece between ther χ^2_{min} and the confidence level of significance

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

NGC 6789 Star Formation History (SFH)

$$(\text{m-M}) = 27.83 \pm 0.06 \otimes \text{A}_V = 0.64 \pm 0.08$$

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

STARLIGHT SFH

Rubén García-Benito 💿 RASPUTIN • 2014 Metallicity and star formation history of NGC 6789

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

STARLIGHT SFH

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

STARLIGHT derived properties

ID	A(V) (mag)	\logM_*	$\logM_{\textit{ion}*}$	${\mathop{\rm EW}({ m H}eta)_c} ({ m \AA})$
Knot A	0.4	5.34	3.69	23
	0.4	5.35	3.81	19
Knot B	0.3	5.26	3.16	30
	0.7	5.22	3.68	30
Knot C	0.7	6.00	4.03	49
	0.6	5.97	3.95	51
Knot D	0.5	5.42	3.79	24
	0.5	5.51	3.66	24
Knot E	0.7	5.16	2.71	84
	0.5	5.21	2.47	95

- Presence old populations confirmed by presence Ca II K λ 3933 Å and Ca II H λ 3968 Å
- 80% coming from the old population
- Little difference in the fitted spectra between the constrained case and the free one

STARLIGHT (Average)	StarFish	Balmer
0.52 ± 0.16	0.64 ± 0.08	0.24 ± 0.04 (A-D) 0.47 ± 0.06 (E)

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

STARLIGHT derived properties

Cid Fernandes et al. (2005)

- Presence old populations confirmed by presence Ca II K λ 3933 Å and Ca II H λ 3968 Å
- 80% coming from the old population
- Little difference in the fitted spectra between the constrained case and the free one

STARLIGHT (Average)	StarFish	Balmer
0.52 ± 0.16	0.64 ± 0.08	0.24 ± 0.04 (A-D) 0.47 ± 0.06 (E)

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

Helium Abundance

	NGC 6789-A	NGC 6789-B	NGC 6789-C	NGC 6789-D	NGC 6789-E
He^{+}/H^{+} (4471)	0.077 ± 0.011	0.080 ± 0.015	0.079 ± 0.013	0.076 ± 0.014	0.082 ± 0.015
He'/H' (5876) He ⁺ /H ⁺ (6678)	0.075 ± 0.011	0.071 ± 0.013	$\begin{array}{c} 0.072 \pm 0.012 \\ 0.071 \pm 0.013 \end{array}$	0.076 ± 0.015	0.073 ± 0.016
He ^{+/} /H ⁺ (7065)			0.074 ± 0.016		
He^+/H^+	0.076 ± 0.010	0.075 ± 0.012	0.074 ± 0.009	0.076 ± 0.011	0.077 ± 0.011
He^{2+}/H^+ (4686)			0.0023 ± 0.0006		
He/H			0.076 ± 0.009		•••

Helium abundance similar all knots and to other BCDs

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

Metal content

	NGC 6700 A	NICC CTOD D	NIGG (700 G	NGC CTOD D	NGC (700 F
	NGC 6789-A	NGC 6789-B	NGC 6789-C	NGC 6789-D	NGC 6789-E
$12 + \log(O^+/H^+)$	7.43 ± 0.04	7.82 ± 0.11	7.42 ± 0.07	7.73 ± 0.11	7.16 ± 0.23
$12 + \log(O^{2+}/H^{+})$	7.63 ± 0.04	7.28 ± 0.07	7.59 ± 0.04	7.41 ± 0.13	7.68 ± 0.17
$12 + \log(O/H)$	7.84 ± 0.04	7.93 ± 0.10	7.81 ± 0.05	7.90 ± 0.12	7.80 ± 0.18
$12 \pm \log(N^+/H^+)$	6.03 ± 0.04	6.37 ± 0.07	6.08 ± 0.06	6.22 ± 0.07	5 85 ± 0 16
	2 57	1 57	0.00 <u>+</u> 0.00	1.07	3.05 <u>1</u> 0.10
12 les(N/H)	5.57	1.57 6 F7 - 0.07	4.57 6 74 ± 0.06	1.97 6 E1 - 0.07	4.09
$12 + \log(N/H)$	0.50 ± 0.04	0.57 ± 0.07	0.74 ± 0.00	0.51 ± 0.07	0.50 ± 0.10
log(N/O)	-1.20 ± 0.00	-1.37 ± 0.12	-1.07 ± 0.08	-1.30 ± 0.14	-1.30 ± 0.24
$12 + \log(S^+/H^+)$	5.70 ± 0.03	5.91 ± 0.07	5.75 ± 0.05	5.83 ± 0.07	5.70 ± 0.14
$12 + \log(S^{2+}/H^{+})$	5.88 ± 0.16	6.14 ± 0.23	6.09 ± 0.16	6.35 ± 0.30	
$100(0^{+})(1$	1 11	1.01	1.24	1.01	7.64
$12 + \log(S/H)$	6.20 ± 0.11	6 25 ± 0.19	1.24 6 41 \pm 0 11	6 49 - 1 0 25	6 59 - 0 14
$\log(S/O)$	1.64 ± 0.12	1.59 ± 0.10	1.41 ± 0.12	1.41 ± 0.27	1.32 ± 0.14
log(3/0)	-1.04 ± 0.12	-1.50 ± 0.20	-1.41 ± 0.12	-1.41 ± 0.27	-1.220.25
$12 + \log(Ne^{2+}/H^{+})$	7.00 ± 0.06	6.77 ± 0.10	7.00 ± 0.06	6.68 ± 0.17	6.75 ± 0.20
$ICE(Ne^{2+})$	1 39	1.61	1.28	2.07	1.22
$12 \pm \log(\text{Ne/H})$	7.14 ± 0.06	6.98 ± 0.10	7.11 ± 0.06	7.00 ± 0.17	6.82 + 0.20
log(Ne/Q)	-0.70 ± 0.07	-0.95 ± 0.14	-0.70 ± 0.08	-0.90 ± 0.21	-0.96 ± 0.27
log(110/0)	0.10 ± 0.01	0.00 ± 0.11	0.10 ± 0.00	0.50 ± 0.21	0.50 ± 0.21
$12 + \log(Ar^{2+}/H^{+})$	5.67 ± 0.08	5.56 ± 0.12	5.56 ± 0.09	5.63 ± 0.17	5.70 ± 0.19
ICF(Ar ²⁺)	1.12	1.21	1.15	1.14	1.10
$12 + \log(Ar/H)$	5.72 ± 0.08	5.64 ± 0.12	5.62 ± 0.09	5.68 ± 0.17	5.74 ± 0.19
$\log(Ar/O)$	-2.12 ± 0.09	-2.28 ± 0.16	-2.19 ± 0.10	-2.22 ± 0.21	-2.06 ± 0.22

- ICFs estimated from tailored photoionisation models
- t([OIII]) between 13000 14300 K
- Knot C, brightest in H α , has in average higher temperatures

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

Metal content

NGC 6789 $[12 + \log(O/H)] \approx 7.80-7.93$

	NGC 6789-A	NGC 6789-B	NGC 6789-C	NGC 6789-D	NGC 6789-E
$\log(N/O)$	$\textbf{-1.26}\pm0.06$	$\textbf{-1.37}\pm0.12$	$\textbf{-1.07}\pm0.08$	$\textbf{-1.38}\pm0.14$	$\textbf{-1.30}\pm0.24$

- At low metallicity, most part of nitrogen has a primary origin and constant log(N/O) is observed
- NGC 6789 N/O ratio is sensibly higher (range -1.38 -1.26; -1.07 for knot C) that values for other low metallicity BCDs (around -1.6) → Different evolutionary and excitation properties

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

Metal content

NGC 6789 $[12 + \log(O/H)] \approx 7.80-7.93$

	NGC 6789-A	NGC 6789-B	NGC 6789-C	NGC 6789-D	NGC 6789-E
$\log(N/O)$	$\textbf{-1.26}\pm0.06$	$\textbf{-1.37}\pm0.12$	$\textbf{-1.07}\pm0.08$	$\textbf{-1.38}\pm0.14$	$\textbf{-1.30}\pm0.24$

- At low metallicity, most part of nitrogen has a primary origin and constant log(N/O) is observed
- NGC 6789 N/O ratio is sensibly higher (range -1.38 -1.26; -1.07 for knot C) that values for other low metallicity BCDs (around -1.6) → Different evolutionary and excitation properties

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

Dust absorption

 To fit the observed EW(Hβ) it is necessary to get an estimation of the dust absorption factor:

$$\mathsf{Q}(\mathsf{H}) = \mathsf{f}_d \, \times \, \mathsf{Q}_{obs}(\mathsf{H})$$

The inclusion of dust allows to fit the measured electron temperature \Rightarrow reproduce thermal balance in the gas^{14}

- Free parameters: amount of dust, radius, and filling factor
- Age of the burst limited to the range 1-10 Myr: initial guesses of $f_d \Rightarrow$ calculate age of cluster and Q(H) to match observed values

 $CLOUDY \Rightarrow$ Fit observed properties

¹⁴ Pérez-Montero & Díaz (2007)

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

CLOUDY Parameters

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

Cloudy Results

	N	GC 6789-A	N	GC 6789-B	N N	GC 6789-C	N	GC 6789-D	N	GC 6789-E
	Mod.	Obs.	Mod.	Obs.	Mod.	Obs.	Mod.	Obs.	Mod.	Obs.
$\log L(H\alpha)$ (erg/s)	37.32	37.23 ± 0.02	37.34	37.34 ± 0.02	37.51	37.50 ± 0.03	37.18	37.17 ± 0.02	37.03	37.02 ± 0.01
Radius (pc)	7	30	33	34	22	37	10	36	5	21
FUV-NUV (mag)	0.17	0.14 ± 0.16	0.28	0.28 ± 0.19	0.30	0.31 ± 0.22	0.22	0.03 ± 0.18	0.10	0.06 ± 0.04
I([OII]/I(Hβ)	2.30	2.34 ± 0.15	3.33	3.16 ± 0.20	2.35	2.51 ± 0.16	3.05	3.14 ± 0.20	1.09	1.06 ± 0.04
$I([OIII]/I(H\beta))$	3.82	3.76 ± 0.17	1.47	1.48 ± 0.07	3.45	3.44 ± 0.15	1.72	1.73 ± 0.08	2.30	2.26 ± 0.20
12+log(O/H)	7.93	7.84 ± 0.04	7.82	7.93 ± 0.10	7.79	7.81 ± 0.05	7.77	7.90 ± 0.12	7.64	7.80 ± 0.18
-EW(Hβ (Å)	21	23	30	30	48	49	29	24	80	84
Age (Myr)	5.4		4.2		3.5		5.2		3.9	
Dust-to-gas ratio	0.026		0.34		0.12		0.15		0.015	
Abs. factor (,)	5.34		7.28		8.21		4.37		2.23	

- Properties generally well fitted, assuming different geometries and dus-to-gas ratios
- $\bullet~{\rm f}_d$ correlates better with FUV-NUV than with the reddening constant \rightarrow complex inner dust structure
- Ages in the range 3.5-5.4 Myr

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

Mass

ID	$\log Q(H^0)$	log M _{burst}	log M(HII)	log SFS	SFR
	(erg/s)	(M_{\odot})	(M_{\odot})	(M_{\odot})	$(10^{-3} \text{ M}_{\odot}/\text{yr})$
Knot A	49.94	3.82	3.45	4.34	1.04
Knot B	50.09	3.65	3.60	4.32	1.47
Knot C	50.31	3.69	3.82	4.54	2.44
Knot D	49.69	3.52	3.20	4.09	0.59
Knot E	49.25	2.73	2.76	3.48	0.21
NGC 6789 ^a	51.49		5.00	5.89	36.97

• Ionized mass of HII \rightarrow M_{H⁺} = Q(H⁰) $\frac{m_p}{n_e \alpha_B}$

- Ionizing cluster mases $\rightarrow Q(H^0) \oplus ages \oplus SB99 \rightarrow similar to STARLIGHT$
- SFS & SFR from Otí-Floranes & Mas-Hesse (2010)

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

Mass

ID	$\log Q(H^0)$	log M _{burst}	log M(HII)	log SFS	SFR
	(erg/s)	(M _☉)	(M _☉)	(M_{\odot})	(10 ⁻³ M _☉ /yr)
Knot A	49.94	3.82	3.45	4.34	1.04
Knot B	50.09	3.65	3.60	4.32	1.47
Knot C	50.31	3.69	3.82	4.54	2.44
Knot D	49.69	3.52	3.20	4.09	0.59
Knot E	49.25	2.73	2.76	3.48	0.21
NGC 6789 ^a	51.49		5.00	5.89	36.97

• Ionized mass of HII \rightarrow M_{H⁺} = Q(H⁰) $\frac{m_p}{n_e \alpha_P}$

- Ionizing cluster mases → Q(H⁰) ⊕ ages ⊕ SB99 → similar to STARLIGHT
- SFS & SFR from Otí-Floranes & Mas-Hesse (2010)

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

Mass

ID	$\log Q(H^0)$	log M _{burst}	log M(HII)	log SFS	SFR
	(erg/s)	(M_{\odot})	(M_{\odot})	(M_{\odot})	$(10^{-3} \text{ M}_{\odot}/\text{yr})$
Knot A	49.94	3.82	3.45	4.34	1.04
Knot B	50.09	3.65	3.60	4.32	1.47
Knot C	50.31	3.69	3.82	4.54	2.44
Knot D	49.69	3.52	3.20	4.09	0.59
Knot E	49.25	2.73	2.76	3.48	0.21
NGC 6789 ^a	51.49		5.00	5.89	36.97

• Ionized mass of HII \rightarrow M_{H⁺} = Q(H⁰) $\frac{m_p}{n_e \alpha_P}$

- Ionizing cluster mases $\rightarrow Q(H^0) \oplus ages \oplus SB99 \rightarrow similar to STARLIGHT$
- SFS & SFR from Otí-Floranes & Mas-Hesse (2010)

NGC 5471

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

Mass

ID	$\log Q(H^0)$	log M _{burst}	log M(HII)	log SFS	SFR
	(erg/s)	(M _☉)	(M_{\odot})	(M_{\odot})	$(10^{-3} M_{\odot}/yr)$
Knot A	49.94	3.82	3.45	4.34	1.04
Knot B	50.09	3.65	3.60	4.32	1.47
Knot C	50.31	3.69	3.82	4.54	2.44
Knot D	49.69	3.52	3.20	4.09	0.59
Knot E	49.25	2.73	2.76	3.48	0.21
NGC 6789 ^a	51.49		5.00	5.89	36.97

- Ionizing cluster mases $\rightarrow Q(H^0) \oplus ages \oplus SB99 \rightarrow similar to STARLIGHT$
- SFS & SFR from Otí-Floranes & Mas-Hesse (2010)

Star Formation History and Stellar Populations Temperatures and Abundances Photoionisation Models and Ionising Populations

Mass

ID	$\log Q(H^0)$	log M _{burst}	log M(HII)	log SFS	SFR
	(erg/s)	(M_{\odot})	(M _☉)	(M_{\odot})	$(10^{-3} \text{ M}_{\odot}/\text{yr})$
Knot A	49.94	3.82	3.45	4.34	1.04
Knot B	50.09	3.65	3.60	4.32	1.47
Knot C	50.31	3.69	3.82	4.54	2.44
Knot D	49.69	3.52	3.20	4.09	0.59
Knot E	49.25	2.73	2.76	3.48	0.21
NGC 6789 ^a	51.49		5.00	5.89	36.97

- Ionized mass of HII \rightarrow M_{H⁺} = Q(H⁰) $\frac{m_p}{n_e \alpha_B}$
- $\bullet~$ lonizing cluster mases $\rightarrow Q(H^0) \oplus ages \oplus SB99 \rightarrow similar to STARLIGHT$
- SFS & SFR from Otí-Floranes & Mas-Hesse (2010)

Summary pilot project: NGC 6789 Project Announcement & End

Summary pilot project: NGC 6789

Summary pilot project: NGC 6789 Project Announcement & End

Summary pilot project: NGC 6789

Auto-consistenc

Summary pilot project: NGC 6789 Project Announcement & End

Summary pilot project: NGC 6789

Auto-consistenc

Summary pilot project: NGC 6789 Project Announcement & End

Summary pilot project: NGC 6789

Auto-consistency

Summary pilot project: NGC 6789 Project Announcement & End

Summary pilot project: NGC 6789

Auto-consistency

Summary pilot project: NGC 6789 Project Announcement & End

Summary pilot project: NGC 6789

Summary pilot project: NGC 6789 Project Announcement & End

2D Star formation histories: 3D data

Rubén García-Benito

RASPUTIN • 2014 Metallicity and star formation history of NGC 6789

Summary pilot project: NGC 6789 Project Announcement & End

2D Star formation histories: 3D data

Summary pilot project: NGC 6789 Project Announcement & End

Main Project

IFU observations of Local Universe BCDs (< 6 Mpc)

All objects with HST data and at least 2 filters (CMD \rightarrow SFH)

Summary pilot project: NGC 6789 Project Announcement & End

CALIFA Second Public Data Release (DR2)

califa.caha.es

200 galaxies

400 datacubes:

V500: 3745-7500 Å (6.0Å) V1200: 3650-4840 Å (2.3Å)

PSF 2.5"

Summary pilot project: NGC 6789 Project Announcement & End

CALIFA Second Public Data Release (DR2)

Rubén García-Benito 💿 RASPUTIN • 2014

Metallicity and star formation history of NGC 6789

Auto-consistent metallicity and star formation history of Blue Compact Dwarf Galaxies:

NGC 6789 as a pilot study

Rubén García-Benito

Instituto de Astrofísica de Andalucía

