
Stellar 
populations  

of 
dwarf galaxies Sven De Rijcke 

Mina Koleva 
 

Joeri Schroyen 
Bert Vandenbroucke 
Robbert Verbeke 
Annelies Cloet-Osselaer 



Dwarfs as 
cosmological 
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Ingredients: 

•  Gadget2 (Springel 2005)  –  N-body/SPH 
 + 

•  Star formation 
  → density threshold nH=100 cm-3 
  → thermal feedback (SNII, SNIa, stellar winds) 
  → nucleosynthesis 

 
•  Heating & ionization by Faucher-Giguère et al. 2009 UVB 

 → ionization equilibrium 
 → self-shielding by HI 
 → radiative cooling (De Rijcke et al. 2013) 
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•  Brooks & Zolotov (2014): 
 vcirc<25 km/s: halos lose gas by UVB + SN feedback 
 vcirc>25 km/s: extended SFHs 
 vcirc>30 km/s: episodic, bursty SFH → cusp to core 

conversion 
•  Sawala et al. (2014): 

 50% of halos @ 2×109M! contain a galaxy (stars) @ z=0 
 luminous dwarf halos are special 
→ sensitive to details! 

•  Shen et al. (2014): 
 Mvir~1010M! ↔ ~107-8M! stars 
 Mvir<10<9M! ↔ no stars 
 in between: sharp drop of star mass 
 interactions cause very late SF 
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Leo T: same HST 
data! 
 
Weisz et al. 2012 
(MATCH, Kroupa 
IMF, Padova stellar 
evolution) 
 
Clementini et al. 
2012 
(Salpeter IMF, Pisa 
Evolutionary 
Library) 



Cole et al. (2014), Aquarius, Leo A: M"~ 106-7M! → delayed star 
formation 
 
Late mass accretion? 
Gas was there but unavailable for SF? 
 
Comparison with Sawala et al. (2011) & Shen et al. (2014) sims 
with Mvir~1010M! 
Comparison with Brooks & Zolotov (2014) → delayed mass 
assembly 
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Leo P: 
 
Isolated dIrr (D~1.7 Mpc,  
Sextans B @ 0.5 Mpc) 
 
ALFALFA: 
Vcirc~15 km/s 
MHI~9×105 M! 
M"~6×105 M! 
(Bernstein-Cooper et al. 
2014) 
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Metallicity gradient: rotating vs. non-rotating 
 
•  Angular momentum barrier causes 

 more spatially uniform star formation 
 less bursty star formation 

•  Observational consequence: 
 flatter metallicity profiles inside 1Re in 
 rotating dwarfs (Schroyen et al. 2011) 

•  Borne out by observations of dEs  
 (Koleva et al. 2009) 
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•  Longevity of gradients (schroyen et al.  2013) 

•  In massive disc galaxies:  
 stellar migration driven by   
   spiral structure 

•  dIrrs lack strong spiral structure 
→ orbital deviations are limited  

 (fractions of Re over 5-10 Gyr) 
→ stellar population gradients can survive  

 for many Gyrs 

•   SF density threshold has influence 
→  higher threshold: 

#  more turbulent ISM 
#  more scattering clouds 

  ↓ 
0.3-0.5 Re / 5 Gyr 
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et al. (2014) 
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Two extreme types of merger tree:  
(i) merger trees with one massive progenitor 
(ii) merger trees with many small progenitors  

 
At fixed halo mass, a type (i) tree produces dwarf  
galaxies with  

larger stellar masses  
(star formation not halted by strong 
starbursts), 
larger half-light radii  
(repeated feedback flattens gravitational  

potential), 
lower central surface brightness  
(idem), 
higher specific angular momentum  
(fewer rotation cancelling mergers),  

compared with a type (ii) tree. 
Cloet-Osselaer et al. 
(2014) 
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Environment 
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Starbursts triggered by infall of gas 
cloud 

 (Verbeke et al. 2014) 
•  Simulate dwarf in isolation 
•  Introduce gas cloud 

 Inspired by HI clouds around 
BCDs and  HVC around Milky Way 
–  Zero metallicity  

– 𝟏/𝒓 density profile  density profile 

– 𝒗≈  escape velocity 
•  Variables 

–  Orbits  
–  Size 
–  Mass 
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Verbeke et al. 2014 
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BCDs	
  
General results: 

SFR can go up by a factor of ~𝟏𝟓,  ,  
but it needs special conditions: 

–  ​𝑴↓𝒈𝒂𝒔  𝒄𝒍𝒐𝒖𝒅 / ​𝑴↓𝒈𝒂𝒍  must 
be large enough 

–  Retrograde orbits are favourable.  
Prograde orbits do not produce a 
burst 

–  Stochastic: instability of ISM 



BCD subclasses (Loose & Thuan, 1986): 
•  nE BCD: elliptical outer isophotes, smooth SF region 
•  Feedback can induce further star formation $ evolution 

from nE to iE  (irregular SF region) 
•  iI: irregular outer  

 isophotes 
•  cometary shape  

$ iI,C 
•  Depends on cloud 

compactness, galaxy 
dynamics, cloud orbit, 
viewing angle 

Micheva+	
  2013a,b	
  nE/iE	
   iI	
   iI,C	
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Density profiles 

•  During burst: large central gas 
concentration that fuels the burst 
 

•  Gravitational potential deepens 
•   

Dark matter and stellar concentration 
increase as well 

Before	
  burst	
   During	
  burst	
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Density profiles 

•  After burst: gas is rapidly removed 
from center by SN feedback 

•  Shallower gravitational potential 

•  Dark matter and stars expand 

•  Postburst dwarfs are more diffuse 

A^er	
  burst	
   During	
  burst	
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Koleva et al. 2014 

Simulations: 
 
Low-Z gas of cloud is 
consumed by star 
formation (dense 
cloud): stellar Z low 
 
Cloud induces star 
formation in gas 
already present (low-
density cloud): stellar Z 
high 

BCDs	
  



Observations 
of simulations 



Cloet-Osselaer, in prep., http://basti.oa-teramo.inaf.it/
index.html 
Tucana data: ACS LCID 
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Neutral gas BCDs	
  [CII]157.7 µm 



SIM OBSERVATIONS 

Neutral gas images are qualitatively similar to observations 

LITTLE THINGS survey 
BCDs	
  



E-ELT>2020 & future 
facilities (JWST2018, 

SKA2018/23) 
•  SFHs of dwarfs in different environments, higher z 

(z~2) 
•  gas content, baryonic TF < 105 M! 

% Statistically significant sample of observations & 
sims   

% Constrain impact of reionization 
 

% Study evolutionary links between different dwarf 
types 


