Stellar populations

Sven De Rijcke Mina Koleval II galaxies Joeri Schroyen Bert Vandenbroucke Robbert Verbeke Annelies Cloet-Osselaer

UNIVERSITE

Dwarfs as <u>cosmological</u> probes

Vladstudio

Ingredients:

- Gadget2 (Springel 2005) N-body/SPH
- Star formation
 - \rightarrow density threshold n_H=100 cm⁻³
 - ightarrow thermal feedback (SNII, SNIa, stellar winds)
 - \rightarrow nucleosynthesis

Heating & ionization by Faucher-Giguère et al. 2009 UVB → ionization equilibrium → self-shielding by HI → radiative cooling (De Rijcke et al. 2013)

Leo T: same HST data!

Weisz et al. 2012 (MATCH, Kroupa IMF, Padova stellar evolution)

Clementini et al. 2012 (Salpeter IMF, Pisa Evolutionary Library)

Cole et al. (2014), Aquarius, Leo A: $M_{\star} \sim 10^{17} M_{\odot} \rightarrow delayed star formation$

Late mass accreticn? Gas was there but inavailable for SF?

Comparison with Sawal et al. (2011) & Shen et al. (2014) sims with $M_{vir} \sim 10^{10} M_{\odot}$

Leo P:

Cosmology

Isolated dlrr (D~1.7 Mpc, Sextans B @ 0.5 Mpc)

ALFALFA: $V_{circ} \sim 15 \text{ km/s}$ $M_{HI} \sim 9 \times 10^5 \text{ M}_{\odot}$ $M_{\star} \sim 6 \times 10^5 \text{ M}_{\odot}$ (Bernstein-Cooper et al. 2014)

Stellar populations

Internal dynamics

Vladstudio

Dynamics

Non-rotating

SALA.		a way in the second	a los	AND ADDRESS OF A		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1.0%							
105							
·							
V							
ת							
5							
-							
N.	Gereed						
ALC: NO)» 					
Ser.	189, 00 V	. FAM	18 - 2 · 1	NAL ESS	STOP - A Stop		an ste

Rotating

00:02

Vladstudio

Metallicity gradient: rotating vs. non-rotating

 Angular momentum barrier causes more spatially uniform star formation less bursty star formation
 Observational consequence: flatter metallicity profiles inside 1R_e in rotating dwarfs (Schroyen et al. 2011)
 Borne out by observations of dEs (Koleva et al. 2009)

Dynamics

Longevity of gradients (schroyen et al. 20

In massive disc galaxies: stellar migration driven by spiral structure

dIrrs lack strong spiral structure

 → orbital deviations are limited
 (fractions of R_e over 5-10 Gyr)
 → stellar population gradients can survive
 for many Gyrs

SF density threshold has influence → higher threshold:

- more turbulent ISM
- more scattering clouds

0.3-0.5 Re / 5 Gyr

- 15.9/84.1 percentile (1 σ)
- average
- ••• 50 percentile

Dynamics

MT 2

Two extreme types of merger tree: (i) merger trees with one massive progenitor (ii) merger trees with many small progenitors

MT 3 Dyna

At fixed halo mass, a type (i) tree produces dwarf galaxies with larger stellar masses (star formation not halted by stro starbursts), larger half-light radii (repeated feedback flattens gravitational potential), lower central surface brightness (idem), higher specific angular momentum (fewer rotation cancelling mergers), compared with a type (ii) tree. Cloet-Osselaer et al.

Environment

BCDS

Density [M_sol / kpc^3]

Starbursts triggered by infall of gas cloud (Verbeke et al. 2014) Simulate dwarf in isolation Introduce gas cloud Inspired by HI clouds around **BCDs and HVC around Milky Way** Zero metallicity -1/r density profile $- \boldsymbol{v} \approx$ escape velocity Variables Orbits - Size – Mass /ladstudic

Verbeke et al. 2014

Gereed

Vladstudio

00:01

General results:

SFR can go up by a factor of ~ 15 , but it needs special conditions:

- Migas cloud / Migal must

be large enough

Retrograde orbits are favourable.
 Prograde orbits do not produce a

BCDs

BCD subclasses (Loose & Thuan, 1986):

- nE BCD: elliptical outer isophotes, smooth SF region
- Feedback can induce further star formation → evolution from nE to iE (irregulation)
- il: irregular outer isophotes
- cometary shape → il,C

9

Depends on cloud compactness, galax dynamics, cloud or viewing angle

nE/iE

11^h 51^m 32^h

11^h 51^m 34^s

R.A. (12000

i1

014 440 42

il.C

Micheva+ 2013a,b

Density profiles

During burst: large central gas concentration that fuels the burst

Gravitational potential deepens

Dark matter and stellar concentration increase as well

Density profiles

After burst: gas is rapidly removed from center by SN feedback

Shallower gravitational potential

Dark matter and stars expand

Postburst dwarfs are more diffuse

Observations of simulations

Cloet-Osselaer, in prep., http://basti.oa-teramo.inaf.it/ index.html

😤 Vladstudio

LITTLE THINGS survey

Vladstudio

BCDs

E-ELT^{>2020} & future facilities (JVST²⁰¹⁸, SKA^{2018/23})

 SFHs of dwarfs in different environments, higher z (z~2)

gas content, baryonic TF < $10^5 M_{\odot}$

Statistically significant sample of observations & sims

Constrain impact of reionization

Study evolutionary links between different dwarf