Cumulative theoretical uncertainties in Lithium Depletion Boundary Age

Emanuele Tognelli^{1,2} Pier Giorgio Prada Moroni^{2,3} Scilla Degl'Innocenti^{2,3}

(1) University of Roma Tor Vergata, (2) INFN Pisa, (3) University of Pisa

RASPUTIN, ESO - Garching 2014

Introduction (1/2)

Lithium Depletion Boundary: Alternative method to assign an age to young clusters

(9 clusters, see e.g. reviews of Jeffries 2006, Soderblom et al 2013)

Lithium depletion:

- ⁷Li destroyed during the PMS ($T_c > 2x10^6$ K) for stellar mass M > 0.06M_{sun}
- Completely destroyed in fully convective stars:
 0.06M_{sun} < M < 0.5 M_{sun}
- Destruction timescale (τ_{ldb}) depends on T_c : $T_c = T_c(M)$
- τ_{Idb} decreases with the stellar mass: strongly dependent on M

Introduction (2/2)

Lithium depletion boundary (LDB):

In a cluster: the smallest object with ≈ 0 surface ⁷Li abundance

0,9 0.8 - 50 Myr 0.7 80 Mvr X(Li) / X⁰(Li) 9'0 — 100 Mvr Mass range \approx [0.06, 0.5] M_{sun} Age range \approx [10, 300] Myr 0.4 0.3 0,2 0.1 0 <u>-</u>5 -4,5 -4 -3,5 -3 -2.5 -2 -1.5 0.01 0.1 M/M_{sun} log L/L

Age inferred by comparing the observed and theoretically computed LDB luminosity. Uncertainty on the models propagates into a final age uncertainty (Bildsten et al. 1997, Burke et al. 2004) Stellar Models (1/3)

PROSECCO: Pisa stellar evolutionary code (Degl'Innocenti et al. 2008)

Updated input physics (Tognelli et al. 2012, Dell'Omodarme et al. 2012, Tognelli et al. 2014)

Detailed atmospheric models: PHOENIX atmospheric code (Brott & Haushildt 2005)

Equation of state: extension to the brown dwarf regime (Saumon, Chabrier & VanHorn 1995)

Updated nuclear cross sections for light elements (deuterium, lithium, beryllium, and boron)

Recently updated solar metals abundances (Asplund et al. 2009)

Stellar Models (2/3)

Uncertainty analysis Input physics and initial chemical composition

$LDB = LDB(\{p_i\}, \{x_k\})$

- ${p_i} = input physics quantity (i.e. opacity, cross section, mixing lenght...)$ $<math>{x_k} = element abundance$
- Independent variation of each quantity. Individual uncertainty source.

input physics: LDB = LDB($p_j \pm \Delta p_j, \{p_{l\neq j}\}, \{x_k\}$) chemical composition: LDB = LDB($\{p_l\}, x_j \pm \Delta x_j, \{x_{k\neq i}\}$)

- Cumulative error stripe.

Simultaneous variation of all the analysed quantities at the same time.

Individual Uncertainty source (1/4)

reference set

Individual Uncertainty source (2/4)

Individual Uncertainty source: INPUT PHYSICS (3/4)

Individual Uncertainty source: CHEMICAL COMPOSITION (4/4)

$$\begin{split} Y &= Y_{\rm P} + \frac{\Delta Y}{\Delta Z} \, Z \\ Z &= \frac{(1-Y_{\rm P})(Z/X)_{\odot}}{10^{-[{\rm Fe}/{\rm H}]} + (1+\Delta Y/\Delta Z)(Z/X)_{\odot}} \end{split}$$

Cumulative Error Stripe (1/2)

Input physics and chemical composition quantities/parameters can vary at the same time

To obtain the error stripe we computed all the possible permutations of the perturbed {p_j} and {x_k}

For a total of \approx 300 sets of models!

Cumulative Error Stripe (2/2)

Conclusions

- Analysis of the main uncertainty sources affecting theoretical LDB age determination
- Individual uncertainty sources: input physics and chemical composition
- For the first time cumulative error stripe: simultaneous variation of the input physics and chemical composition quantities/parameter
- Error stripe: 40% of the total error budget due to the uncertainty on the initial chemical composition
- Age uncertainty: from 3-5% (100 Myr) to 8-15% (20 Myr)

"[...] after all it's been written in the stars [...]" John Lennon, Woman, Double Fantasy, 1980

...The End!!!!

RASPUTIN, ESO - Garching 2014

Backups 1

Backups 2

Table 5. Pairs of (Y,Z) values used for the computations of the models with the perturbed chemical composition.

(Y, Z)	$[\mathrm{Fe}/\mathrm{H}]$	$\Delta Y / \Delta Z$	$(Z/X)_{\odot}$
Y = 0.2740 Z = 0.0130	+0.0	2	AS09
Y = 0.2790 Z = 0.0100	-0.1	3	AS09
Y = 0.2650 Z = 0.0160	+0.1	1	AS09
Y = 0.2750 Z = 0.0090	-0.1	3	AS09-15%
Y = 0.2670 Z = 0.0190	+0.1	1	AS09+15%

$$Z = \frac{(1 - Y_{\rm P})(Z/X)_{\odot}}{10^{-[{\rm Fe/H}]} + (1 + \Delta Y/\Delta Z)(Z/X)_{\odot}}$$
$$Y = Y_{\rm P} + \frac{\Delta Y}{\Delta Z} Z$$