The WN population in the Magellanic Clouds

Rainer Hainich, Diana Pasemann, Ute Rühling & Wolf-Rainer Hamann

Universität Potsdam Institut für Physik und Astronomie

Resolved And unresolved Stellar PopUlaTIoNs (RASPUTIN) - Garching 2014

Wolf Rayet Stars (WR)

- evolved massive stars \hookrightarrow initial masses above $20M_{\odot}$
- $OB \rightarrow (BSG/LBV) \rightarrow WR$
- dense and fast stellar winds (up to $\approx 5000 \, \text{km/s}$)
- strong mass loss $(10^{-5} M_{\odot}/{
 m yr})$
- spectra with strong broad emission lines
 - helium and nitrogen
 → WN sequence
 - carbon, helium, and oxygen
 → WC sequence

PoWR: Potsdam Wolf-Rayet model code for expanding stellar atmospheres with spherical stellar winds

Features:

- full Non-LTE calculation of population numbers
- complex model atoms (H, He, N, C, O, ...)
- radiative transfer in co-moving frame
- pressure broadening in formal integral
- iron-line blanketing (super-level approach)
- wind inhomogeneities (micro-clumping)
- applicable to hot stars (WR, O, B, LBV, CSPN ...)

PoWR models: www.astro.physik.uni-potsdam.de/PoWR.html

WN population in the MCs

R. Hainich et al.

Spectral analysis

Aim: reproduce the complete spectra instead of individual lines

Magellanic Cloud sample

Large Magellanic Cloud

- nearly complete WN population (101 of 117 WN stars)
 → Hainich et al. (2014)
- 31 binaries/binary suspects (Foellmi et al. 2003b)

Magellanic Cloud Emission-Line Survey (Smith et al. 2005)

Small Magellanic Cloud

- complete WN population
- 7 single stars + 4 binaries (Foellmi et al. 2003a)
- single: Hainich et al. (in prep.) binary: Shenar et al. (in prep.)

Magellanic Cloud Emission-Line Survey (Smith et al. 2005)

WN spectra: comparison between LMC and SMC

WNE: WN 2 - WN 5 WNL: WN 6 - WN 11

SMC:

- considerably weaker emission lines
- inherent absorption lines
- photosphere might be partly visible
- weaker winds
- \hookrightarrow metallicity effect

WN spectra: comparison between LMC and SMC

WNE: WN 2 - WN 5 WNL: WN 6 - WN 11

SMC:

- considerably weaker emission lines
- inherent absorption lines
- photosphere might be partly visible
- weaker winds
- \hookrightarrow metallicity effect

\dot{M} -Z-relation:

- averaged M
 for each galaxy
- $Z_{\rm MW} = 0.014$
- $Z_{\rm LMC} = 0.006$
- $Z_{\rm SMC} = 0.002$

\dot{M} -Z-relation:

- averaged M
 for each galaxy
- $Z_{\rm MW} = 0.014$
- $Z_{\rm LMC} = 0.006$
- $Z_{\rm SMC} = 0.002$

weighted fit:

$\dot{M} \propto Z^{0.9}$

M-*Z*-relation:

- averaged M
 for each galaxy
- $Z_{\rm MW} = 0.014$
- $Z_{\rm LMC} = 0.006$
- $Z_{\rm SMC} = 0.002$

weighted fit:

$\dot{M} \propto Z^{0.9}$

Mass-loss prescription for WN stars: (χ^2 -fit to the whole dataset)

M-*Z*-relation:

- averaged M
 for each galaxy
- $Z_{\rm MW} = 0.014$
- $Z_{\rm LMC} = 0.006$
- $Z_{\rm SMC} = 0.002$

weighted fit:

 $\dot{M} \propto Z^{0.9}$

Mass-loss prescription for WN stars: ($\chi^{\rm 2}\text{-}{\rm fit}$ to the whole dataset)

 $\dot{M} = -12.6 + 2\log(1 + X_H) + 2.3\log(L/L_{\odot}) - 2.5\log(M/M_{\odot}) + 0.7\log(Z)$

Evolutionary status of the WN stars

Stellar evolution: LMC

R. Hainich et al.

Stellar evolution: LMC

Geneva evolution tracks: Meynet & Maeder (2005)

- *Z* = 0.008
- with rotation
- $M_{\rm WR,ini} \approx 30 \, M_{\odot}$

Stellar evolution: LMC

Geneva evolution tracks: Meynet & Maeder (2005)

- *Z* = 0.008
- with rotation
- $M_{\rm WR,ini} \approx 30 \, M_{\odot}$

```
deduced initial WR mass: pprox 20 M_{\odot}
```

SMC WN stars: comparison with LMC and MW sample

MW sample:

- Hamann et al. (2006)
- Martins et al. (2008)
- Liermann et al. (2010)
- Oskinova et al. (2013)

LMC sample:

• Hainich et al. (2014)

 considerably more luminous

SMC WN stars: comparison with LMC and MW sample

MW sample:

- Hamann et al. (2006)
- Martins et al. (2008)
- Liermann et al. (2010)
- Oskinova et al. (2013)

LMC sample:

• Hainich et al. (2014)

SMC sample:

- considerably more luminous
- all with hydrogen

Stellar evolution: SMC

Evolution tracks from Eldridge & Vink (2006)

- *Z* = 0.004
- without rotation

•
$$M_{\rm WR,ini} \approx 45 \, M_{\odot}$$

```
deduced initial WR mass: \approx 30-35~M_{\odot}
```

Stellar evolution: SMC

Evolution tracks from Eldridge & Vink (2006)

- *Z* = 0.004
- without rotation

•
$$M_{\rm WR,ini} \approx 45 \, M_{\odot}$$

deduced initial WR mass: $\approx 30-35~M_{\odot}$

Stellar evolution: SMC

Geneva evolution tracks: Georgy et al. (2013)

- *Z* = 0.002
- with rotation

•
$$M_{
m WR,ini} pprox 85 M_{\odot}$$

deduced initial WR mass: $\approx 30-35~M_{\odot}$

R. Hainich et al.

12 / 14

Stellar evolution: SMC – quasi homogeneous evolution

Conclusions

Open question:

How to explain the observed hydrogen abundance for SMC WN stars simultaneously with their individual HRD positions?

Stellar evolution models:

- still partly fail to reproduce the observed WN parameter range
 - predicted initial WR mass to high
 - SMC: observed hydrogen abundances cannot be reproduced

Stellar wind mass loss:

- winds of SMC WN stars weaker than their MW and LMC counterparts
- mass-loss prescription for WN stars:

 $ightarrow \dot{M} = -12.6 + 2\log(1 + X_H) + 2.3\log(L/L_{\odot}) - 2.5\log(M/M_{\odot}) + 0.7\log(Z)$

Stellar evolution: SMC - old generation of Geneva models

R. Hainich et al.

Binary evolution

Radial velocity study: Foellmi et al. (2003a)

Binary evolution:

Evolution tracks from Eldridge et al. (2013)

- *Z* = 0.02
- evolution tracks for the primary
- also fail to reproduce the observed surface abundances

Binary evolution

Radial velocity study: Foellmi et al. (2003a)

Binary evolution:

Evolution tracks from Eldridge et al. (2013)

- *Z* = 0.02
- evolution tracks for the primary
- also fail to reproduce the observed surface abundances

R. Hainich et al.

Radius problem of WR stars

 Observed T_{*} of H-free WR stars much lower than predicted

Stellar envelope inflation

- Extended sub-photospheric layers
- Taking the effect of clumping into account (Gräfener et al. 2012)
- Solving the temperature discrepancy

HRD of the Galactic WN stars

Single star evolution: SMC

Stellar evolution models vs. observation:

- hydrogen abundances are lower than observed
- in general the agreement seems to be better at higher metallicities
 - initial metallicity of SMC WN stars higher than Z = 0.002
 - \hookrightarrow Piatti (2011): strongly age dependent $Z_{
 m SMC}$
 - mass-loss rates higher than prescribed in stellar evolution models
 - missing physical ingredient

Line-driven stellar winds

(Castor, Abbott & Klein 1975, "CAK")

- absorption mainly from radial directions but isotropic re-emmission
 ⇒ acceleration ⇒ velocity ↑
 ⇒ Doppler shift of the line
- photons from whole frequency band $\Delta \nu$ are swept up
- intercepted momentum per time and line: $L_{\nu_0}\Delta\nu/c = Lv_{\infty}/c^2 = \dot{M}v_{\infty}$
- mass loss by each thick line: $\dot{M} = L/c^2 \cong \dot{M}$ by nuclear burning
- fails for WR stars
 → WR mass loss exceeds the single scattering limit

Frequency $v \rightarrow$

R. Hainich et al.

Modified wind momentum-luminosity relation

 D_{mom} -L-relation:

compared to the results for LMC OB stars (Vink et al. 2000, 2001; Mokiem et al. 2007)

$$D_{\rm mom} = \dot{M} v_{\infty} R_*^{1/2}$$

winds of SMC WR stars
$$\approx$$
 winds of O stars