Blue Supergiant Stars -Distances and Metallicities in Galaxies beyond the Local Group

Rolf Kudritzki

UNIVERSITY OF HAWAII . INSTITUTE FOR ASTRONOMY

in collaboration with

Miguel Urbaneja

Fabio Bresolin

Lee Patrick

Wolfgang Gieren Grzegorz Pietrzynski

Maria Bergemann

N

Norbert Przybilla

Bertrand Plez

Rosetta stone to understand galaxy formation and chemical evolution!

50,000 star forming galaxies with SDSS spectra

mass-metallicity relationship

Tremonti et al., 2004, ApJ 613, 898

However.

Something must be wrong....

It's based on very simplified emission line analysis....

mass-metallicity relationship

Tremonti et al., 2004, ApJ 613, 898

Tremonti et al., 2004, ApJ 613, 898

50,000 star forming galaxies with SDSS spectra

mass - metallicity relationship

depends crucially on strong line method calibration

supergiant stars will come to rescue !!!!

Blue supergiants - objects in transition

Brightest normal stars at visual light: $10^5..10^6 L_{sun}$ -7 $\ge M_V \ge -10 mag$

 $t_{ev} \sim 10^3$ yrs L, M ~ const.

ideal to determine

- chemical compos.
- · abundance grad.
- SF history
- extinction
- extinction laws
 - distances of galaxies

Spectroscopy of individual BSGs beyond the Local Group

- $\begin{array}{l} \label{eq:loss} & \mbox{selection of targets from wide field CMDs} \\ & \mbox{HST ACS imaging} \end{array}$

 - multi-object spectroscopy $\Delta \lambda \sim 4-5 \dot{A}$ with FORS @ VLT LRIS @ Keck

 \rightarrow detailed NLTE model atmospheres $T_{eff} \sim 4\%$, $\Delta \log g \sim 0.05$, metallicity $\sim 0.1 dex$

 galaxies out to 10 Mpc with TMT/E-ELT 30 Mpc

pilot study

Kudritzki, Urbaneja, Bresolin et al. 2008, ApJ 681, 269

Study of metallicities

Advanced atmosphere models: ~ 10⁶ lines in NLTE NGC300/star21

Spectral window 4497-4607Å

Athens 2013

Kudritzki, Urbaneja, Gazak et al., 2012, ApJ 747, 15

M81 object C20

BSG, this work

A mass-metallicity relationship only from stellar spectroscopy

Comparison with HII strong line methods (Kewley & Ellison, 2008)

HII auroral line method -staggered SDSS spectra Andrew & Martini, 2013

Hubble constant uncertainty $\rightarrow \frac{\delta w}{w} \approx 2 \frac{\delta H_0}{H_0}$ $w = \frac{p}{c^2 o}$

$$\frac{\delta w}{w} \approx 2 \frac{\delta H_0}{H_0}$$

$$w = \frac{p}{c^2 \rho}$$

 $\delta H_{0} \sim 10\% \rightarrow \delta w \sim 0.2$ goal for next decade !! $1\% \rightarrow \delta w \sim 0.02$

Riess et al., 2009, 2011 $\rightarrow \delta H_0 \sim 3\%$

The perennial problem of extragalactic distances

patchy dust extinction

E(B-V) variable R_v variable

need distance indicator which allows for determination of

E(B-V), R_V

of each individual object

NGC 300 at 1.9 Mpc

E(B-V) from BSG spectroscopy

M81 at 3.5 Mpc

E(B-V) from BSG spectroscopy

Adopted by HST Key Project Freedman et al. 2001

Kudritzki, Urbaneja, Gazak et al., 2012, ApJ 747, 15

Flux weighted Gravity - Luminosity Relationship (FGLR)

Kudritzki, Bresolin, Przybilla, ApJ Letters, 582, L83 (2003)

M81 FGLR

NGC 3621

Key Project galaxy at 6.5 Mpc

Tully-Fisher calibrator

BSGs in NGC 3621

VLT/FORS spectra

Kudritzki, Urbaneja, Bresolin, Hosek, Przybilla, 2014, ApJ, 788, 56

BSGs in NGC 3621: HST ACS

Fit of Balmer lines \longrightarrow log g NGC 3621 slit 17

best log g fit -- $\Delta \log g = \pm 0.05$

At fixed T_{eff} $\Delta \log g \leq \pm 0.05$

NGC 3621 FGLR and distance

spirals with extended disks:

flat metallicity profiles

NGC1512

NGC4625

Bresolin et al. 2012, ApJ 750, 122

M83

NGC3621

NGC 3621 different HII strong line methods

Bresolin et al. 2012

NGC 3621-Fit of stellar metal lines

Kudritzki et al. 2014

NGC 3621 stellar metallicity

Kudritzki et al. 2014

NGC 3621 outer disk chemical evolution

"Maser Galaxy" distance accurate to 3% Humphreys et al., 2013

NGC 4258 7.6 Mpc

New anchor galaxy of extragalactic distance scale using PLR of Cepheids Riess et al., 2011

Keck/LRIS slit 6

NGC 4258 7.6 Mpc

B

HST ACS 1" radius

Kudritzki, Urbaneja, Gazak, Macri, Hosek, Bresolin, Przybilla 2013, ApJ 779, L20

Metallicity of NGC 4258

Zaritsky et al., 1994 strong lines

Bresolin, 2011

BSG' in NGC 4258 Kudritzki et al.,2013

FGLR of NGC 4258 BSG

FGLR vs. Cepheid distances

BSGs and TMT/ELT perspectives

WFOS \rightarrow quantitative spectroscopy possible down to m_v ~ 24.5 mag

 \rightarrow with objects $M_V \leq -8$ mag

m - M ~ 32.5 mag ~ 30 Mpc possible

chemical evolution studies SF ISM, extinction, extinction laws distances 10 objects per galaxy $\rightarrow \Delta(m-M) \sim 0.1$ mag