

Case for an E-ELT wide field imager to study resolved stellar populations

J. Cepa (IAC-ULL) & G. Bono (U. Roma-Tor Vergata) on behalf of

E. Alfaro (IAA-CSIC), A. Bongiovanni (IAC), A. Ederoclite (CEFCA), M. Fabrizio (OAT), J.I. González (IFCA-UNICAN), J. González (IA-UNAM), A.M. Pérez García (IAC), R. Ragazzoni (OAP), M. Sánchez (ESAC)

Overview

- E-ELT "wide" field imaging: pilot stellar population science
- Tentative instrument requirements
- Technical feasibility
- "Wide field" imaging capabilities of other ELTs
- Summary
- Next steps

Age-metallicity in the Galactic bulge

- Signs that Galactic bulge kinematics depends on Z (Babusiax+ 2010)
- Z gradients in Galactic bulge (Johnson+ 13, Ness+ 13, González+ 13)
- But the need for disentangling age-Z distributions require:
 - Accurate NIR photometry down to MSTO & MS knee (Bono+ 2011)
 - \Rightarrow H 24-28 & K 22-26 AB mag
 - Mapping 10s-100s sq. deg.
 - But...
 - HST: not K band or large FoV
 - HAWK-I: too large exp. times (10⁴h)

RR-Lyr in the Galactic bulge

- Steep density & reddening gradients towards the centre
- The detailed study of Galatic bulge RR-Lyr would allow
 - Mapping 3D structures in the bulge
 - Examining early SFH of the Galaxy
 - Tracing metallicity gradients
- & require

 - "Wide" FoV

Galactic GC ages

• WDs blue TO at S/N >10 MS-Knee 18 together with other Z = 0.001, t = 13 Gyr, Y = 0.248indicators, can constrain 20 \$/N≈50 DA WDs GC distance and age $DM_0 = 13.7, E_{B-v} = 0.1$ Calamida+ 2014 \mathbf{x} (& talk in this meeting) 24 - Deep NIR imaging – Mapping 100 sq.arcmin S/N≈10 26 Blue TO Red TO 28 -0.50.0 1.0 1.5 0.5 October 17th 2014 RA

Study of resolved stellar populations

- Some NIR diagnostics:
 - T_e : Br γ (2.17 μ m) & Pa lines
 - g: Nal doublet (0.81-0.82 μ m)
 - α -el:Fell(1.64), Wing-Ford(0.99), CO(2.3)
 - L dwarfs: H_2O absorption (1.49, 1.75 μ m)
 - T dwarfs: CH₄ (1.66 μ m)
 - Y dwarfs: NH₃ (1.53 μ m)
- NB competitive wrt spectroscopy for
- Crowded Galactic regions & Local Group
 - Deep mapping/survey of extended regions required
- But... (i.e.)
 - ~2.600 hours with HAWK-I for CH₄
 - JWST NIRCam 2.2' FoV, 3 NB filters @ 1.64, 1.87, 2.12 μm R~100
- Complementary study of unresolved populations using MICADO

Extragalactic NIR NB hints

- SF & Metallicity of low L systems at 1.2 < z < 2.5
 - H α , H β & R23 indicators
- Intracluster Light at high redshift
 - [OIII] at 0.6 < z < 3.5
- Galaxy clusters & protoclusters at 1.2 < z < 2.5
 - H α , H β , [OII], [OIII] \Rightarrow SFR, A_V, BPT, R23
- Based on:
 - Mapping/Survey capabilities (Cluster Virial radii: 2-4 arcmin)
 - Key optical spectral lines shifted to NIR
 - Too high exposure times required at other facilities
 - NB imaging competitive wrt MOS (crowded/surveys)

Mid Band imaging

- Imaging the FoV through a set of contiguous MB filters
- Equivalent to low R 3D spectroscopy of all targets in FoV
- Follow-up or definition of very faint spectroscopic targets
- Advantageous wrt MOS for crowded fields:
 - Extragalactic fields for $AB_I \ge 24$, allowing $\Delta z/(1+z) \sim 0.006$
 - Galactic bulge
 - Galactic GC

Tentative top level requirements

FoV	>25 (40) sq. arcmin
λ range	0.8-2.3 (0.3-2.3) (μm)
Filters	BB, MB & NB
Plate scale	0.05 ⇐ 0.1 ("/pix)
AO	GLAO (M4)

Galactic Bulge: 5' = 12 pc, 0.3" = 0.01 pc

Technical feasibility

- Preliminary hints
 - Focal reducer: Collimator plus camera
 - Warm (0.8-1.7 μ m) + cold (1.7-2.3 μ m) arms?
 - Optical arm?
 - Field segmentation?
 - Relaxed OSIRIS/GTC-like design as trial
 - Trade-off: field size vs. plate scale
 - Crowding is a limit
 - Asymmetric Moffat functions (Fiorentino+14)
 - To be studied in NB (less severe)
- Requirements TBD
 - FoV & plate scale
 - Image quality stability across the FoV (Telescope+Instrument)
 - Wavelength range 0.8 μ m < λ < 2.3 μ m (warm+cold? optical extension?)
 - Filter strategy (number, FWHM, wavelength coverage)

ELTs WFI context

- MOBIE @ TMT (f/15) "Workhorse" (Bigelow+ SPIE 2014)
 - FoV: 25 sq. arcmin, at 0.05"/pix (15 μ m pixel)
 - λ : 0.3 1.0 μm
 - Collimator + camera system
 - 37cm ϕ filters
 - Natural seeing
- Competitive E-ELT WFI
 - NIR
 - NB MB filters
 - GLAO available (M4)

- There are interesting stellar population science cases that require
 - NIR
 - Mapping/survey capabilities (i.e. relatively "wide field")
 - Narrow band
- & not feasible at VLT, but complementing E-ELT instrument suite
- Other add-ons: MB imaging covering spectral range
 - Equivalent to low R spectroscopy >2mag fainter than spectroscopy
 - Advantageous in crowded fields wrt. MOS
 - Allow high photo-z accuracy & detection of emission lines
 - More accurate SED fitting
 - Follow-up or definition of faint spectroscopic targets
- Competitive features wrt TMT (NB, K)
- Feasible technical solutions to be explored exists

Next steps: work to be done

- Build up consortium gathering researchers & engineers
- Define/Refine Science Cases
- Derive Top Level Requirements from above
- Parallel viability study
- Preparing for ESO Lol for the "Instrument #6"

Interested? Please contact us: jcn@iac.es