The Assembly Histories of Quiescent Galaxies Since z = 0.7

Jieun Choi

Harvard/CfA University of California, Santa Cruz Charlie Conroy John Moustakas Genevieve Graves Brad Holden Mark Brodwin Michael Brown Pieter van Dokkum massive quiescent galaxies appear to be mostly assembled by z~1 then passively evolve to z~0

e.g., Bundy+ 2006; Renzini 2006; Cirasuolo+ 2007; Vergani+ 2008; Marchesini+ 2009; Banerji+ 2010; Moustakas+ 2013; Muzzin+ 2013

quiescent galaxies appear to grow inside-out

McLure+ 2013; Belli+ 2013

stellar pop. analysis offers another channel for studying galaxy evolution

Thomas+ 2010

goal: to measure the age and abundance ratios of a mass-complete sample of quiescent galaxies as a function of M_{*} at 0.1<z<0.7

our model uses simple stellar populations

Conroy & van Dokkum+ 2012; Conroy+ 2014

our model uses simple stellar populations

Conroy & van Dokkum+ 2012; Conroy+ 2014

MESA Isochrones & Stellar Tracks coming soon!

the galaxy sample

sdss.org

Abazajian+ 2009

R ~ 2000 52,908 galaxies 14.5 < r < 17.6 mmto.org

R ~ 1000 10,839 galaxies 15 < I_{Vega} < 20

quiescence selection using specific SFR

stellar mass and SFR estimates from iSEDfit Moustakas+ 2013

stacked spectra in bins of logM-z

testing the stacking procedure

62 SDSS galaxies with log(M/M $_{\odot}$) ~ 11.5

example fits

SDSS

the abundance ratios show no redshift evolution

Choi+ 2014

what's next?

ongoing survey at UCSC using Keck DEIMOS ~500 quiescent galaxies at <z>~0.7 with 8 - 36 hr exposures

http://www.astro.caltech.edu/

low S/N regime (~20 Å⁻¹ with ~0.1 dex precision) z ~ 1, e.g., MOSFIRE radial gradient studies, e.g., MaNGA

summary

there is negligible evolution in abundances at fixed M over the last \sim 7 Gyr, consistent with passive evolution in the inner \sim 0.3 – 3 R_e

the young ages we observe & the existence of massive quiescent galaxies at z > 1 indicate the inhomogeneous nature of the z < 0.7 quiescent population

the full-spectrum fitting technique opens the possibility to engage in stellar pop. analysis using low S/N data, e.g., z>1, galaxy outskirts

response functions allow us to measure variable abundances

13 Gyr simple stellar population

simulations suggest dry minor-mergers

e.g., Naab+ 2007; Kereš+ 2009; Naab+ 2009; Hopkins+ 2009; Dekel+ 2009; Lackner+ 2012; Hilz+ 2013

*assuming the spectra are probing ~ 1 R_e

recall that the abundances show no redshift evolution

stars in massive quiescent galaxies are old

e.g., Trager+ 1998; Thomas+ 2005; Graves+ 2007; Schiavon 2007; Smith+ 2009; Zhu+ 2010; Thomas+ 2010; Johansson+ 2012; Worthey+ 2013; Conroy+ 2014

Choi+ 2014

galaxies become older with decreasing z

... and enriched in elements like Mg and C

e.g., Trager+ 1998; Thomas+ 2005; Graves+ 2007; Schiavon 2007; Smith+ 2009; Zhu+ 2010; Thomas+ 2010; Johansson+ 2012; Worthey+ 2013; Conroy+ 2014

the abundance patterns provide clues about star formation processes

Thomas+ 2010

quiescent galaxies

non-star-forming, red, and dead galaxies

radial gradients in stellar population properties support this story (maybe)

Choi+ 2014

T

advantages of full-spectrum fitting: 1. low S/N

advantages of full-spectrum fitting: 2. age-metallicity degeneracy

a popular way to measure abundances is the Lick/IDS index system

Burstein+ 1984; Worthey+ 1994

requires S/N~100 per Angstrom

quiescent galaxies appear to grow inside-out

e.g., Daddi+ 2005; Trujillo+ 2006; vanDokkum+ 2008; vanderWel+ 2008; Cimatti+ 2008; Bezanson+ 2009; Damjanov+ 2009; Williams+ 2010; Cassata+ 2010; vanDokkum+ 2010; LópezSanjuan+ 2012; McLure+ 2013; Belli+ 2013

and simulations support this notion as well

e.g., Naab+ 2007; Kereš+ 2009; Naab+ 2009; Hopkins+ 2009; Dekel+ 2009; Lackner+ 2012; Hilz+ 2013

check that the sample is mass-complete then stack spectra in bins of logM-z

uncertainties as a function of S/N

there is no significant bias introduced due to artificial smoothing

examining the residuals

we create stacked spectra in bins of logM-z

even in the presence of radial gradients (worst-case scenario), we expect negligible aperture bias

where is the light coming from?

SDSS: 3" AGES: 1".5

where is the light coming from?

Keck DEIMOS spectra of two quiescent galaxies in a cluster at z = 0.83

tantalizing clues of the role of environment on stellar population properties

age-dependent response functions

