Modelling Galaxies

James Binney Oxford University

Prologue

- Work on surveys of the MW has led to significant advances in model Galaxies
- These advances can now be applied to external galaxies
- Made possible by the advent of techniques for evaluating action-angle coordinates in arbitrary galactic potentials (Binney 10, 12, Sanders 12, Sanders&B 14a, 14b)
- Crucially, we can now assemble dynamical models component by component (incl DM and BH components)
- For now only axisymmetric equilibrium models
- Extension to triaxial & time-dependent models lies ahead (but see S&B14b)

Outline

- Why equilibrium models
- Review of model types
- Models with specified f(J)
- Designer f(J) for spheroids & DM
- f(J) for discs
- Worked example: the MW
- Conclusions

Equilibrium models

Essential because

- We want distribution of mass (M/L, $\rho_{\rm DM}({\rm x}),$ M_{\rm BH},..) & hope to infer these from dynamics of stars
- Without the assumption of dynamical equilibrium, any phasespace distribution is possible
- Information limited [in external galaxies (α , δ , v_{los})] and we hope to complement this by using constraints from dynamics
- Best way to compensate for defects in data (seeing, spectral resolution, selection effects) is to "observe" a model
- E galaxies quickly settle to equilibrium
- Spiral structure in disc galaxies we plan to model by applying perturbation theory to an equilibrium model
- Use of p-theory brings physical understanding

Model types

- N-body
 - Final model determined by initial conditions through an obscure mapping
- Hence M2M (Syer & Tremaine 96, de Lorenzi + 08, Dehnen 09, Morganti + 13)
 - Adjust weights of particles dynamically to optimise fit to obs
- Schwarzschild modelling (Schwarzschild 79)
 - Build a library of orbits and then choose weights to optimise fit to obs
- Problems with all of above:
 - Discreteness noise (eg McMillan & B 13)
 - Hard to characterise model (non-uniqueness of description)
 - Computational cost

Models with specified DF

- Models with f(E,L) (Michie 63, King 66) fundamental to studies of GCs
 - Can quickly recover $\rho(\mathbf{r})$, $\sigma_r(\mathbf{r})$, etc from f(E,L)
- Most galaxies are non-spherical
 - Models with f(E,L_z) studied since Prendergast & Tomer 70
 - Not easy to recover $\rho(R,z)$ from f(E,L_z)
 - Relation of observables to f(E,L_z) obscure
 - Models require σ_R = σ_z
- Models from Jeans eqs (Satoh 80, Binney+90) also restricted to σ_R = σ_z

Models with specified f(J)

- Most orbits in axisymmetric Φ are quasiperiodic \Rightarrow admit three integrals of motion (Arnold 78)
 - Integrals best chosen to be actions J_i
- In spherical case
 - J_r quantifies radial oscillations
 - $J_{\phi} = L_z$
 - $J_{\theta} = L L_z$ quantifies motion $\perp z = 0$
- These choices generalise uniquely to axisymmetric case: various notations for unique objects
 - $J_u = J_r$
 - $J_v = J_\theta = J_z$ quantifies motion \perp equatorial plane
- $J = 0 \Rightarrow$ star at rest at centre
 - J $\rightarrow\infty$ \Rightarrow star becomes unbound
 - Any finite J with $J_r>0$, $J_z>0$ corresponds to a bound orbit

Models with specified f(J)

- Any non-negative f(J) with ∫d³J f(J) < ∞ defines a legitimate galaxy model
- $M = (2\pi)^3 \int d^3 J f(J)$ is the mass
- In any $\Phi(\mathbf{R},\mathbf{z})$ we can evaluate $\rho(\mathbf{R},\mathbf{z})$, $\sigma_R(\mathbf{R},\mathbf{z})$, ...
- Given 2 DFs $f_1(J)$, $f_2(J)$ with $M_i = (2\pi)^2 \int d^3 J f_i(J)$ can build a model with 2 stellar populations cohabiting the same Φ
- So we seek f_i(J) for i = 1,...,N stellar populations and f_{DM}(J) for DM
- The self-consistent \$\Phi(R,z)\$ is easily found by rapidly convergent iteration (Binney14)

Designing f(J)

- f(J) is density of stars in 3d action space (d³x d³v = d³θ d³J), so form of f(J) is readily pictured
- Start in spherical limit when Eddington gives us f(H) that generates given $\rho(\mathbf{r})$ in given $\Phi(\mathbf{r})$
 - In 1 special case (Henon's isochrone) we have H(J) so can immediate convert to f[H(J)]
 - This case explored by Binney 14
 - Generally don't know H(J) but good approximations not hard to find (Fermani 13, Williams+14)
 - When $\Phi(\xi x) = \xi^{a}(x)$ orbits can be rescaled $(x,v) \rightarrow (x',v')$ with $x' = \xi x, v' = \xi^{a/2}v$ by the virial thm
 - It follows that J ~ xv scales J ightarrow J'= $\xi^{1+a/2}$ J
 - Hence H(J) = [h(J)]^{a/(1+a/2)} where h(ζJ)=ζh(J) is homogeneous of degree one
 - If self-consistent, we require $\rho \sim r^{a-2}$ and then f(J) ~ [h(J)]^{-(4+a)/(2+a)]}
 - Introduce core by writing $f(J) \sim [J_0+h(J)]^{-(4+a)/(2+a)]}$

Example isochrone

- Has Kepler Φ as r $ightarrow \infty$ and Eddington f(H)~H^{-5/2}
- Suggests $f(J) = A[J_0+h(J)]^{-5}$
- We choose $h(J) = J_r + (\Omega_{\phi}/\Omega_r)J_{\phi} + (\Omega_z/\Omega_r)J_z$ which would be homogeneous if frequency ratios were invariant under $J \rightarrow \zeta J$ (~ energy-independent)
- Even with h(J) inhomogeneous, we have a valid DF

Designing f(J) – 2 power models

- Many popular models (Jaffe, Hernquist, NFW,..) are 2-power models
- Apply reasoning above to regions r ightarrow 0 (lpha=1, eta=-1) and r $ightarrow\infty$
- In each region $\Phi(r) \sim r^{\alpha} \rho(r) \sim r^{\beta}$ implies by Eddington f ~ E^($\beta/\alpha 3/2$) and therefore
- $f(J) \sim [h(J)]^{-(3\alpha 2\beta)/(\alpha + 2)}$
- Example: Hernquist model

$$f(\mathbf{J}) = \frac{A}{[h(\mathbf{J})]^{5/3} [J_0 + h(\mathbf{J})]^{5-5/3}}$$

f(J) for DM (NFW)

Flattening a DM halo with a disc

Velocity anisotropy

- Isotropic model has f[H(J)] so $\frac{\partial f/\partial J_r}{\partial f/\partial J_{\phi}} = \frac{\partial H/\partial J_r}{\partial H/\partial J_{\phi}} = \frac{\Omega_r}{\Omega_{\phi}}$
- Using $h(\mathbf{J}) = J_r + \frac{\Omega_{\phi}}{\Omega_r} J_{\phi} + \frac{\Omega_z}{\Omega_r} J_z$ ensures near isotropy because $\Omega_{\mathbf{j}} / \Omega_{\mathbf{j}} \sim \text{const}$
- Ω_i / Ω_j depends mostly on E, i.e. |J|
- Anisotropic mode has $f_{\alpha}(\mathbf{J}) \equiv (\alpha_r \alpha_{\phi} \alpha_z) f_{\mathrm{I}}(\alpha_r J_r, \alpha_{\phi} J_{\phi}, \alpha_z J_z)$ with $\alpha_{\mathrm{i}} \mathrel{!=} 1$
- If $\alpha_z > \alpha_\phi$ the model becomes oblate

Isochrone model with α_{ϕ} =1, α_{z} = 1.5 (Binney 2014)

Rotation

- So far models non-rotating; flattened by velocity anisotropy
- Generate rotation by adding to DF part odd in J $_{\phi}$ $f(\mathbf{J}) = (1-k)f_{+}(\mathbf{J}) + kf_{-}(\mathbf{J})$
- A natural choice is $f_{-}(\mathbf{J}) = g(J_{\phi})f_{+}(\mathbf{J})$
- We adopt $g(J_{\phi}) = \tanh\left(\frac{\chi J_{\phi}}{\sqrt{GMb}}\right)$

Projected density & mean velocity of maximally rotating (k=0.5) isochrone α_{ϕ} =0.7, α_{z} =1.4 (Binney 2014)

Maximal rotation (k=0.5)

Galactic discs

• Built up from "quasi isothermal" components (B10 B12)

$$f_{\sigma_{0r},\sigma_{0z}}(L_z, J_r, J_z) = \frac{\Omega \Sigma}{\pi \sigma_r^2 \kappa} \Big|_{R_c} [1 + \tanh(L_z/L_0)] e^{-\kappa J_r/\sigma_r^2} \\ \times \frac{\nu}{2\pi \sigma_z^2} e^{-\nu J_z/\sigma_z^2}. \qquad \Sigma(L_z) = \Sigma_0 e^{-R_c/R_d} \\ \sigma_i(R_c) = \sigma_{0i} e^{(R_0 - R_c)/R_\sigma}$$

Quasi isothermal σ_{r0} =40, σ_{z0} =20 km/s (Binney 12)

Model from Geneva-Copenhagen survey (Binney 12, Binney+14)

- Thick disc a single quasi-isothermal
- Each cohort of coeval stars age τ a quasi-isothermal

$$\sigma_{0i}(\tau) = \left(\frac{\tau + \tau_1}{\tau + \tau_T}\right)^{\beta_i} \sigma_{0i}$$

- Exponentially decaying SFR
- Fit model to GCS
- Predict velocity distributions for RAVE

Secular evolution

- Equilibrium models just the start
- Given f(J) one can solve for evolution of population as stars diffuse through action space
- Diffusion coefficients $\langle J_i^{\,2}\rangle$ computed from 1st-order perturbation theory based on fluctuations in \varPhi
- If you have (J,θ) , you can also use method of "perturbation particles"
- N-body in which particles used only to represent fluctuations

Conclusions

- Equilibrium dynamical models are key tools
- Advent of techniques for computing J(x,v) in general potentials gives new possibilities for galaxy modelling
- Start from f(J) for each population
- Population defined by age, metallicity, place of birth,...
- f describes star density in 3d action space
- Transparent relation between f(J) and structure of component
- Simple functional forms for f(J) yield models similar to familiar spheroids and exponential discs
- Can inspect observables for component in any \varPhi
- Can readily find Φ self-consistently generated by a sum of components (incl DM component)