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Prologue 

• Work on surveys of the MW has led to significant advances 
in model Galaxies 

• These advances can now be applied to external galaxies 
• Made possible by the advent of techniques for evaluating 

action-angle coordinates in arbitrary galactic potentials 
(Binney 10, 12, Sanders 12, Sanders&B 14a, 14b) 

• Crucially, we can now assemble dynamical models 
component by component (incl DM and BH components) 

• For now only axisymmetric equilibrium models 
• Extension to triaxial & time-dependent models lies ahead 

(but see S&B14b) 



Outline  

• Why equilibrium models 

• Review of model types 

• Models with specified f(J) 

• Designer f(J) for spheroids & DM 

• f(J) for discs 

• Worked example: the MW 

• Conclusions 



Equilibrium models 

• Essential because 
– We want distribution of mass (M/L, ½DM(x), MBH,..) & hope to 

infer these from dynamics of stars 
– Without the assumption of dynamical equilibrium, any phase-

space distribution is possible 

– Information limited [in external galaxies (®, ±, vlos)] and we hope 
to complement this by using constraints from dynamics 

– Best way to compensate for defects in data (seeing, spectral 
resolution, selection effects) is to “observe” a model 

• E galaxies quickly settle to equilibrium 
• Spiral structure in disc galaxies we plan to model by 

applying perturbation theory to an equilibrium model 
• Use of p-theory brings physical understanding 



Model types 

• N-body 
– Final model determined by initial conditions through an obscure 

mapping 

• Hence M2M (Syer & Tremaine 96, de Lorenzi + 08, Dehnen 09, Morganti + 13) 

– Adjust weights of particles dynamically to optimise fit to obs 

• Schwarzschild modelling (Schwarzschild 79) 

– Build a library of orbits and then choose weights to optimise fit 
to obs 

• Problems with all of above: 
– Discreteness noise (eg McMillan & B 13) 
– Hard to characterise model (non-uniqueness of description) 
– Computational cost  

 



Models with specified DF 

• Models with f(E,L) (Michie 63, King 66) fundamental to 
studies of GCs 

– Can quickly recover ½(r), ¾r(r), etc from f(E,L) 

• Most galaxies are non-spherical 

– Models with f(E,Lz) studied since Prendergast & Tomer 70 

– Not easy to recover ½(R,z) from f(E,Lz) 

– Relation of observables to f(E,Lz) obscure 

– Models require ¾R = ¾z  

• Models from Jeans eqs (Satoh 80, Binney+90) also 
restricted to ¾R = ¾z 



Models with specified f(J) 
• Most orbits in axisymmetric © are quasiperiodic ) admit 

three integrals of motion (Arnold 78) 
– Integrals best chosen to be actions Ji 

• In spherical case 
– Jr quantifies radial oscillations 
– JÁ = Lz 

– Jµ = L-Lz quantifies motion ? z=0 

• These choices generalise uniquely to axisymmetric case: 
various notations for unique objects 
– Ju = Jr  
– Jv = Jµ = Jz quantifies motion ? equatorial plane 

• J = 0 ) star at rest at centre 
– J! 1 ) star becomes unbound 
– Any finite J with Jr>0, Jz>0 corresponds to a bound orbit 

 



Models with specified f(J) 

• Any non-negative f(J) with sd3J f(J) < 1 defines a 
legitimate galaxy model 

• M = (2¼)3sd3J f(J) is the mass 
• In any ©(R,z) we can evaluate ½(R,z), ¾R(R,z), … 
• Given 2 DFs f1(J), f2(J) with Mi = (2¼)2sd3J fi(J) can build 

a model with 2 stellar populations cohabiting the same 
© 

• So we seek fi(J) for i = 1,…,N stellar populations and 
fDM(J) for DM 

• The self-consistent ©(R,z) is easily found by rapidly 
convergent iteration (Binney14) 



Designing f(J) 

• f(J) is density of stars in 3d action space (d3x d3v = d3µ d3J), 
so form of f(J) is readily pictured 

• Start in spherical limit when Eddington gives us f(H) that 
generates given ½(r) in given ©(r) 
– In 1 special case (Henon’s isochrone) we have H(J) so can 

immediate convert to f[H(J)] 
• This case explored by Binney 14 

– Generally don’t know H(J) but good approximations not hard to 
find (Fermani 13, Williams+14) 

– When ©(» x) = »a(x) orbits can be rescaled (x,v) ! (x’,v’) with 
x’= »x, v’ = »a/2v by the virial thm 
• It follows that J ~ xv scales J ! J’=»1+a/2J 
• Hence H(J) = [h(J)]a/(1+a/2) where h(³J)=³h(J) is homogeneous of degree 

one 
• If self-consistent, we require ½ ~ ra-2 and then f(J) ~ [h(J)]-(4+a)/(2+a)] 

– Introduce core by writing f(J) ~ [J0+h(J)] -(4+a)/(2+a)] 
 



Example isochrone  
• Has Kepler © as r ! 1 and Eddington f(H)~H-5/2 

• Suggests f(J) = A[J0+h(J)]-5 

• We choose h(J) = Jr + (Á/r)JÁ + (z/r)Jz which would be 
homogeneous if frequency ratios were invariant under J ! 
³J (~ energy-independent) 

• Even with h(J) inhomogeneous, we have a valid DF 



Designing f(J) – 2 power models 
• Many popular models (Jaffe, Hernquist, NFW,..) are 2-power models 
• Apply reasoning above to regions r ! 0 (®=1, ¯=-1) and r! 1 

• In each region ©(r) ~ r® ½(r) ~ r¯ implies by Eddington f ~ E(¯/® – 3/2) 
and therefore 

• f(J) ~ [h(J)]-(3® – 2¯ )/(® +2) 

• Example: Hernquist model  



f(J) for DM (NFW) 

•   
truncation 



Flattening a DM halo with a disc 

 



• Isotropic model has f[H(J)] so 
 

• Using                                              ensures near isotropy because i/j ~ const 
 

• i/j depends mostly on E, i.e.|J| 
• Anisotropic mode has                                                                       with ®i != 1 
• If ®z > ®Á the model becomes oblate 

 
 

Velocity anisotropy 

Isochrone model with ®Á=1, ®z = 1.5 (Binney 2014) 

Dispersions on equator & z axis 

ellipticity 



Rotation  
• So far models non-rotating; flattened by velocity anisotropy 
• Generate rotation by adding to DF part odd in JÁ 

 
• A natural choice is 

 
• We adopt 

 

Projected density & mean velocity of maximally rotating (k=0.5)  
isochrone ®Á=0.7, ®z=1.4 (Binney 2014) 



Maximal rotation (k=0.5) 

• Emsellem+ 07 defined 

i = 15, 30, 45,.. 

Radial bias 

Tangential bias 



Galactic discs 

• Built up from “quasi isothermal” components (B10 B12) 

Quasi isothermal ¾r0=40, ¾z0=20 km/s (Binney 12) 



Model from Geneva-Copenhagen survey 
(Binney 12, Binney+14) 

• Thick disc a single quasi-isothermal 
• Each cohort of coeval stars age ¿ a quasi-isothermal 

 
 

• Exponentially decaying SFR 
• Fit model to GCS 
• Predict velocity distributions for RAVE 

Cool dwarfs: data/prediction 
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Secular evolution 

• Equilibrium models just the start 
• Given f(J) one can solve for evolution of 

population as stars diffuse through action space 
• Diffusion coefficients hJi

2i computed from 1st-
order perturbation theory based on fluctuations 
in © 

• If you have (J,µ), you can also use method of 
“perturbation particles” 

• N-body in which particles used only to represent 
fluctuations 
 



Conclusions 

• Equilibrium dynamical models are key tools 
• Advent of techniques for computing J(x,v) in general 

potentials gives new possibilities for galaxy modelling 
• Start from f(J) for each population 
• Population defined by age, metallicity, place of birth,… 
• f describes star density in 3d action space 
• Transparent relation between f(J) and structure of 

component 
• Simple functional forms for f(J) yield models similar to 

familiar spheroids and exponential discs 
• Can inspect observables for component in any © 

• Can readily find © self-consistently generated by a sum 
of components (incl DM component) 
 
 


