CLUSTERING MEASUREMENTS OF ACTIVE GALACTIC NUCLEI

ENVIRONMENTS OF BL LAC AND FSRQ BLAZARS USING GALAXIES FROM THE SDSS

KYLE WILLETT UNIVERSITY OF MINNESOTA, USA GARCHING BEI MÜNCHEN, JULY 2014

BLAZAR/RADIO GALAXY UNIFICATION SCENARIO

	BL LAC	FSRQ
OPTICAL SPECTRUM	no strong emission or absorption features EW < 5 Å	broad emission lines superimposed on strong continuum
RADIO JETS	$\text{high } \nu_{\text{peak}}$	$\begin{array}{c} \text{low } \nu_{\text{peak}}, \ \alpha_r < 0.5 \\ \text{core-dominated} \\ \text{morphologies} \end{array}$
HOST GALAXY	luminous ellipticals	luminous elliptical, 1-2 mags brighter than BL Lac hosts
ENVIRONMENT	moderately rich clusters; Abell class 0 to 1	lie in regions of lower galaxy densities

VIEWED DIRECTLY
DOWN JET AXIS

BLAZAR/RADIO GALAXY UNIFICATION SCENARIO

	FRI	FR II
OPTICAL SPECTRUM	weak optical emission lines (for given luminosity)	typically stronger optical emission lines
RADIO JETS	low-luminosity; intensity falls off away from nucleus	high luminosity; extended lobes and hotspots
HOST GALAXY	giant ellipticals; 10% have some deviation from profile of $r^{1/4}$	ellipticals; slightly lower average optical luminosities than FR Is
ENVIRONMENT	moderately rich clusters; often BCGs	relatively isolated, more consistent with field galaxies

PREVIOUS RESULTS

- Prestage+88: BL Lac environments are consistent with FR Is
- Individual studies of BL Lacs show excesses of galaxies with Abell richnesses between 0 and 1 (Falomo+96,00,Pesce +94,Fried+93,Smith+95) in agreement with FR Is (Hill+91)
- Owen+95: surveys of powerful radio sources in clusters revealed many FR Is, but no BL Lacs.
- Wurtz+93,97: BL Lacs are found in poor clusters, with richness increasing with redshift. Trends are more similar to FR II than FR I.
- Urry+00, Falomo+00, Pesce+02: enhancements in BL Lac environments over average density. High number of close companions (< 20 kpc) identified.

MISSING: UP-TO-DATE STUDIES OF THE BLAZAR POPULATIONS WITH IMPROVED STATISTICS AND DEEPER IMAGING

SPATIAL COVARIANCE AMPLITUDE

- Developed by Longair & Seldner (1979)
- Measures number of neighboring galaxies in projection around a single point
- Pros: independent of magnitude limit or counting radius; can be used without full 3D positions
- Cons: statistical measurement with large error bars (~50-100%) on individual points

$$B = (N_t - N_{bg}) \frac{(3 - \gamma)D^{\gamma - 3}\theta^{\gamma - 1}}{2A_{\theta}I_{\gamma}\Psi[M(m, z)]}$$

SAMPLE SELECTION

- Roma-BZCAT (2,728 blazars)
- Optically-selected blazars from SDSS
 - 723 BL Lacs (Plotkin et al. 2010)
 - 185 FSRQs (Chen et al. 2009)
- TeV-Cat γ-ray selected objects (148 blazars)

DISTRIBUTION OF BLAZAR SPATIAL CORRELATION AMPLITUDES

BLAZAR CLUSTERING AS FUNCTION OF REDSHIFT

- 757 blazars have measurable B_{gB} values from SDSS data
- Richer clusters are found at z > 0.5, increasing by a factor of 2-3
- Trend is the same for both BL Lacs and FSRQs

CLUSTERING VALUES AS FUNCTION OF MULTI WAVELENGTH PROPERTIES

CLUSTERING AND THE BLAZAR SEQUENCE/ENVELOPE

ENVIRONMENTS OF POWERFUL RADIO GALAXIES

- Measured B_{gg} for 239 morphologicallyclassified radio galaxies in the SDSS footprint
- Radio galaxies have similar spatial correlation amplitudes to both types of blazars
 - FR I: 150 ± 533 Mpc^{-1.77}
 - FR II: 175 ± 364 Mpc^{-1.77}
- FR I galaxies exist in similar environments to FR II galaxies
- No strong evolution in B_{gg} as a function of redshift

RADIO GALAXY ZOO

VARIABILITY AS FUNCTION OF ENVIRONMENT

- Galaxies with UHECR emission can only show it if magnetic fields are not isotropized by nearby companions
- Emission caused by UHECR should not rapidly vary in flux, since the source size is large.
 - Prediction: low variability TeV blazars should live in low-density environments.
- Of the two known TeV blazars in SDSS with low variability, one is in a an underdense and the other in a moderately overdense cluster

Razzaque+12

	z	В
1ES 0229+200	0.14	-299 ± 259
RGB J0152+017	0.08	316 ± 366

PHYSICAL MECHANISMS FOR DIFFERENT BLAZAR CLUSTERING STRENGTHS

- Rapidly changing gas density or galaxy-galaxy interaction rate causes cause AGN in rich clusters to fade. This would transform more quasars into BL Lacs.
- FR II sources are less likely to be in high-density environments; increased external gas pressure in ICM suppresses collimated jet with advancing hot spot
- Inflow of gas/dust from nearby neighbors/ICM changes the accretion efficiency of the BH

CONCLUSIONS

- The unification paradigm of blazars with radio galaxies can be indirectly probed by examining their Mpc-scale environments
- 757 blazars + clustering galaxies from SDSS is the largest sample so far constructed
- Blazars exist in moderately overdense regions, but there is no significant difference between companions of the BL Lac and FSRQ populations

