Single Dish observations with ALMA

(Thomas Stanke, EU ARC, Garching)

An interferometer does not record an image of the sky, but samples visibilities over a set of baselines defined by the antenna positions.

The largest angular scales on which emission can be recovered are given by the shortest baselines (i.e., ≥ antenna diameter).

An interferometer does not record an image of the sky, but samples visibilities over a set of baselines defined by the antenna positions.

The largest angular scales on which emission can be recovered are given by the shortest baselines (i.e., ≥ antenna diameter).

To recover emission on all angular scales, visibilities corresponding to shorter baselines have to be provided:

➤Interferometric data on shorter baselines (i.e., using smaller antennas)

An interferometer does not record an image of the sky, but samples visibilities over a set of baselines defined by the antenna positions.

The largest angular scales on which emission can be recovered are given by the shortest baselines (i.e., ≥ antenna diameter).

To recover emission on all angular scales, visibilities corresponding to shorter baselines have to be provided:

- ➤Interferometric data on shorter baselines (i.e., using smaller antennas)
- Single dish data (D≥d_{min})

An interferometer does not record an image of the sky, but samples visibilities over a set of baselines defined by the antenna positions.

simple simulation of ALMA observation by Y.Kurono

The ALMA Compact Array – ACA:

7m array:

≥ nine 7m antennas, operated as interferometer, baselines 9 to 30m (main array: baselines > 18m)

Bands 3-9, spectral line and continuum observations

Total power (TP) array:

≥ two 12m antennas, operated as Single Dish telescopes

Bands 3-8

Spectral line observations only

The ALMA Compact Array – ACA:

- ≥ nine 7m antennas, operated as interferometer, baselines 9 to 30m (main array: baselines > 18m)
- ≥ two 12m antennas, operated as Single Dish telescopes (spectral line only)

The ALMA Compact Array – ACA:

- ≥ nine 7m antennas, operated as interferometer, baselines 9 to 30m (main array: baselines > 18m)
- ≥ two 12m antennas, operated as Single Dish telescopes (spectral line only)

Short spacings for ALMA main array data, Cycle-2: ... do I need any?

Interferometer sensitive only for angular scales smaller than a 'Maximum Recoverable Scale', which is given by the shortest baselines (and the observing frequency):

$$\Theta_{MRS} \sim 0.6 \lambda / L_{min}$$
 [radians] $\sim 37100 / L_{min} v$ [arcsec]

(... but this is not a 'hard' limit...)

- 1. What angular resolution do I need? -> main array configuration
- 2. Up to which scale do I need to recover emission?
 - main array configuration might be sufficient
 - a more compact main array configuration might have to be added
 - ACA 7m interferometric data might have to be added
 - ACA TP might have to be added

Short spacings for ALMA main array data, Cycle-2: ... do I need any?

Interferometer sensitive only for angular scales smaller than a 'Maximum Recoverable Scale', which is given by the shortest baselines (and the observing frequency):

$$\Theta_{MRS} \sim 0.6 \lambda / L_{min}$$
 [radians] $\sim 37100 / L_{min} v$ [arcsec]

Frequency (GHz)	Max Rec Scale, Without ACA (arcsec)	Max Rec Scale ACA 7m array (arcsec
100	25	42
150	17	28
230	11	18
345	7.2	12
460	5.4	9.1
650	3.8	6.4

Short spacings for ALMA main array data, Cycle-2: ... do I need any? if yes, how does it affect the total time needed?

What rms is needed in the final data? -> integration time on main array (most extended configuration needed) t_{int, MA}

- a more compact main array configuration is needed: -> add 50%
- ACA 7m interferometric data are needed -> add 200%
- ACA TP data are needed -> add another 200%

ACA 7m array will cover the same field as the 12m main array

ACA 12m total power antennas will observe a slightly larger field Reference position will be selected by observatory

Observations will use, if possible, the same calibrators

Single Dish data will include a map of a bright unresolved source to measure the beam shape

Observations will be done close in time, but not simultaneously with 12m main array

Data reduction:

7m array: similar to 12m main array

TP: pipeline reduced data cubes

Combination: CASA guides (still...) in preparation

Summary

Short spacings in Cycle-2:

- >7m array: spectroscopy, continuum, B3,4,6,7,8,9
- ➤ Total Power array: spectroscopy, B3,4,6,7,8
- ➤ All you need to think about: what is the largest scale I want to recover?
- ➤OT will work out the rest!
- ➤ Future developments: B9, continuum (using 'nutators'...)

